首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we report the first example of using scanning electrochemical microscopy (SECM) to quantitatively analyze O2 reductive activation in organic media catalyzed by three different Fe porphyrins. For each porphyrin, SECM can provide in one single experiment the redox potential of various intermediates, the association constant of FeII with O2, and the pKa of the FeIII(OOH?)/ FeIII(OO2?) couple. The results obtained can contribute to a further understanding of the parameters controlling the catalytic efficiency of the Fe porphyrin towards O2 activation and reduction.  相似文献   

2.
3.
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper‐ and palladium‐mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel‐mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3). The strategy relies on PMe3‐promoted oxidative addition and transmetalation, and CCl3CN‐induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.  相似文献   

4.
C−C coupling by transition metal catalyzed C−H activation has developed into a diverse area of research. The applicable catalysts are manifold, and the variety of products obtained range from basic chemicals to pharmaceuticals and building blocks for carbon networks. One reaction, in which several C−C bonds are formed under C−H activation of a methyl group, is the conversion of ortho-iodoanisole according to Equation (1).  相似文献   

5.
6.
We report the first catalytic method for activating the acyl C?O bonds of methyl esters through an oxidative‐addition process. The oxidative‐addition adducts, formed using nickel catalysis, undergo in situ trapping to provide anilide products. DFT calculations are used to support the proposed reaction mechanism, to understand why decarbonylation does not occur competitively, and to elucidate the beneficial role of the substrate structure and the Al(OtBu)3 additive on the kinetics and thermodynamics of the reaction.  相似文献   

7.
The chlorine dioxide radical (ClO2.) was found to act as an efficient oxidizing agent in the aerobic oxygenation of methane to methanol and formic acid under photoirradiation. Photochemical oxygenation of methane occurred in a two‐phase system comprising perfluorohexane and water under ambient conditions (298 K, 1 atm). The yields of methanol and formic acid were 14 and 85 %, respectively, with a methane conversion of 99 % without formation of the further oxygenated products such as CO2 and CO. Ethane was also photochemically converted into ethanol (19 %) and acetic acid (80 %). The methane oxygenation is initiated by the photochemical Cl?O bond cleavage of ClO2. to generate Cl. and O2. The produced Cl. reacts with CH4 to form a methyl radical (CH3.). Finally, the oxygenated products such as methanol and formic acid were given by the radical chain reaction. A fluorous solvent plays an important role of inhibiting the deactivation of reactive radical species such as Cl. and CH3..  相似文献   

8.
Efficient molecular oxygen activation (MOA) is the key to environmentally friendly catalytic oxidation reactions. In the last decade, single-atomic-site catalysts (SASCs) with nearly 100 % atomic utilization and unique electronic structure have been widely investigated for MOA. However, the single active site makes the activation effect unsatisfactory and difficult to deal with complex catalytic reactions. Recently, dual-atomic-site catalysts (DASCs) have provided a new idea for the effective activation of molecular oxygen (O2) due to more diverse active sites and synergetic interactions among adjacent atoms. In this review, we systematically summarized the recent research progress of DASCs for MOA in heterogeneous thermo- and electrocatalysis. Finally, we look forward to the challenges and application prospects in the construction of DASCs for MOA.  相似文献   

9.
Molecular oxygen is an important oxidizing agent both in industrial and in biological processes. In many of these processe, the O2 molecule reacts preferentially with free radicals, which are frequently paramagnetic metal ions. Homogeneous systems of this type that are described in the literature are discussed, and an attempt is made to establish the factors that determine the course and mechanism of the reaction.  相似文献   

10.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

11.
A nickel‐catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B‐alkyl 9‐BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)?OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)?C(sp3) bonds that does not suffer from β‐hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C?O bonds is presented to demonstrate the advantage of this method.  相似文献   

12.
A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C?H activation, it was competent for intermolecular activation of a variety of sp‐, sp2‐, and sp3‐hybridized C?H bonds. Double C?F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.  相似文献   

13.
Thiophene‐annulated naphthalene diimide (NTI)‐based molecules have recently emerged as an important class of n‐type electronic materials. However, their synthesis has predominantly been achieved by Stille or Suzuki coupling reactions despite the presence of a potential C?H bond in NTI. Additionally, the synthesis of NTI or more generally mono‐functionalization of naphthalene diimide (NDI) starts with a cumbersome bromination that results in a low yield, is unselective, and requires tedious purification. We herein thus address these issues via a two‐step C?H activation: a rhodium‐catalyzed direct C?H iodinization is first presented for NDI, followed by establishing an efficient direct arylation protocol for NTI with high yield and robustness. Coupling of up to four NTI units on a benzene or pyrene core is demonstrated along with other aryl bromide substrates. All the herein reported NTI‐based small molecules showed n‐type semiconductor behavior under air.  相似文献   

14.
Cationic cobalt complexes enable unprecedented cobalt‐catalyzed C?H/C?C functionalizations with unique selectivity features. The versatile cobalt catalyst proved broadly applicable, enabled efficient C?H/C?C cleavage at room temperature, and delivered Z‐alkenes with excellent diastereocontrol.  相似文献   

15.
Aiming at structural and functional mimics of the active site of the NiII containing quercetin‐2,4‐dioxygenase NiII flavonolate complexes Tp*NiX [Tp* = hydrotris(3,5‐dimethyl)pyrazolylborate, X = 3‐hydroxy flavonolate (Fla), 3‐hydroxy thioflavonolate (SFla), 3‐hydroxy selenoflavonolate (SeFla)] were synthesized and characterized by spectroscopic methods and X‐ray crystallography. The complex Tp*NiFla reacts with O2 via dioxygenation of bound flavonolate to benzoic acid and salicylic acid as one should expect for a functional model of the enzyme. Modification of the carbonyl function of the flavonolate to the corresponding C=S and C=Se compounds retained dioxygenase like reactivity, but did not lead to an increase of reaction rate as had been anticipated due to a weaker interaction of S/Se with the central nickel atom.  相似文献   

16.
17.
The first dicobalt(III) μ2-peroxo N-heterocyclic carbene (NHC) complex is reported. It can be quantitatively generated from a cobalt(II) compound bearing a 16-membered macrocyclic tetra-NHC ligand via facile activation of dioxygen from air at ambient conditions. The reaction proceeds via an end-on superoxo intermediate as demonstrated by EPR studies and DFT. The peroxo moiety can be cleaved upon addition of acetic acid, yielding the corresponding CoIII acetate complex going along with H2O2 formation. In contrast, both CoII and CoIII complexes are also studied as catalysts to utilize air for olefin and alkane oxidation reactions; however, not resulting in product formation. The observations are rationalized by DFT-calculations, suggesting a nucleophilic nature of the dicobalt(III) μ2-peroxo complex. All isolated compounds are characterized by NMR, ESI-MS, elemental analysis, EPR and SC-XRD.  相似文献   

18.
We report a novel approach to the classical natural product quinine that is based on two stereoselective key steps, namely a C?H activation and an aldol reaction, to unite the two heterocyclic moieties of the target molecule. This straightforward and flexible strategy enables a concise synthesis of natural (?)‐quinine, the first synthesis of unnatural (+)‐quinine, and also provides access to unprecedented C3‐aryl analogues, which were prepared in only six steps. We additionally demonstrate that these structural analogues exhibit improved antimalarial activity compared with (?)‐quinine both in vitro and in mice infected with Plasmodium berghei.  相似文献   

19.
In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C?O bond‐cleaving alkylation, for the first time without the limiting β‐hydride elimination. This new nickel‐catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.  相似文献   

20.
A powerful oxidant and an unstable isomer of HNO3, peroxynitrous acid ONOOH is generated by the fast reaction of H2O2 with HNO2 in acidic medium [Eq. (1)]. If sulfides R2S are present, ONOOH sulfoxidizes them in minutes. This reaction occurs faster than the decay of ONOOH to HNO3 and allows the fast preparation of sulfoxides with H2O2. (1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号