首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a homogeneous single layer model for surface roughness by polarized light has been developed. It has been shown that the reflectance change in non-absorbing layer is directly proportional to the refractive index of the ambient and substrate media for s polarization but inversely proportional to the p polarization and it is directly proportional to the square of the thickness of the layer for both the polarization. In an absorbing layer, it has been shown that the thickness of the layer is equal to the twice of surface roughness of the single layer identical system for s polarization but it is ratio of twice of surface roughness to the square of refractive index of thin film for p polarization. The extinction coefficient of the layer is directly proportional to the thickness of that layer for both the polarization. The consequence of the scattered light on the specular reflectance and transmittance for oblique incidence shows that there is reduction in reflectance (in both non-absorbing and absorbing cases) and transmittance (in the absorbing case for p polarization only), due to roughness on the surface under the Drude effective-medium approximation. Thus such an absorbing layer provides a valid model for the effect of scatter on the transmittance for p polarization only.  相似文献   

2.
The effect of the amorphous thin layer on the surface growth of amorphous/crystalline binary multilayer films has been studied by using a continuum model. It is shown that both the surface roughness and the growth exponent of amorphous/crystalline binary multilayer films decrease with increasing thickness ratio between amorphous and crystalline layers. Our simulations have also revealed, in contrast to the monotonous rise in surface roughness observed in single-layer films grown on flat substrates, the surface growth of a multilayer film consists of two processes: interface smoothing and roughening, namely the film roughness decreases during the growth of amorphous thin layers but increases monotonously during the growth of crystalline thin layers. The observed interface smoothing and roughening can be obviously influenced by the change in the thickness ratio between amorphous and crystalline layers. The rise in thickness ratio between amorphous and crystalline layers enhances the interface smoothing effect but lowers the interface roughening effect and consequently shows a marked smoothing effect on the surface roughness.  相似文献   

3.
Two frequency selective surface (FSS) configurations with flat topped passband are presented in this paper.One configuration is single layer FSS with λ/4 thickness dielectric loaded on both sides, and the other is double layers FSS. Based on the modal matching method, the frequency response properties including angle effect and polarization effect of both FSS configurations are analyzed, and the plots of the frequency versus transmission coefficient are obtained for different incident angles and polarizations. It is shown that the structure with the single layer FSS embedded centrally in the λ/2 thickness dielectric has a wider flat top bandwidth of 6.8 GHz than that of the double layers FSS of 3 GHz. In addition, the fabrication of single layer is relatively easier than the double layers FSS.  相似文献   

4.
《Applied Surface Science》1987,27(4):367-380
A mechanical crater erosion technique is employed to obtain Auger electron spectroscopy (AES) composition-depth profiles of plasma nitrided surface layers on pure iron substrates. The technique is illustrated by the determination of the composition and thickness of the surface layers, and it is shown that after plasma nitriding for 8 h at 570° C in a dissociated NH3 atmosphere, an iron oxy-nitride layer forms on the surface with a subsequent decrease in thickness of the gamma prime iron-nitride layer below that. The surface roughness of the crater polished in the surface of the material has the largest influence on the accuracy and reproducibility of the depth profiling technique.  相似文献   

5.
Effect of interface roughness on antiferromagnetic coupling between Fe layers in a Fe/Cr/Fe trilayer, with Cr layer having a wedge form has been studied. All the samples have been deposited simultaneously on substrates having different roughness, thus it is being considered that there is no variation in the morphological features like grain size and grain texture of the films. Measurements have been done as a function of Cr spacer layer thickness and the peak value of antiferromagnetic coupling strength is compared among different trilayers, thus any influence of spacer layer thickness fluctuation from sample to sample has also been avoided. The samples are characterized by X-ray reflectivity (XRR) and magneto-optic Kerr effect (MOKE). XRR results show that the roughness of the substrate is not replicated at the successive interfaces. Antiferromagnetic coupling between Fe layers decreases with the increase of roughness of Fe/Cr/Fe interfaces.  相似文献   

6.
The germanium distribution in Si(001)/Si1 − x Ge x layers as a function of the layer thickness at a low dopant concentration (x < 6%) has been investigated using high-resolution X-ray diffractometry and low-temperature photoluminescence. It has been shown that the germanium concentration increases with increasing thickness of the SiGe layer with the formation of lateral inhomogeneities at the boundary between this layer and a silicon cap layer for a layer thickness of 30 nm or more. These inhomogeneities have an oriented character and give rise to anisotropic diffuse scattering for the system of (113) and (224) asymmetric reflections from SiGe. The luminescence of these films at low temperatures and low excitation densities is an emission of localized and delocalized excitons, which is characteristic of systems with disorder. The revealed nonuniform germanium distribution in the lateral direction is associated with the accumulation of germanium in the near-surface SiGe layer and with the partial relaxation of elastic strains due to the development of surface roughness and the preferred incorporation of germanium atoms into one side of the surface ripples.  相似文献   

7.
Protein deposition on field-emitter tips has been examined using Transmission Electron Microscopy to view the protein coated tip profile. A single layer of adsorbed protein is barely if at all detectable, but double and triple layers produced by the immunologic reaction can be directly observed. As a result, the thickness and morphology of antigen-antibody layers has been directly observed for the first time. Tips exposed first to Bovine Serum Albumin (BSA) and then to anti-BSA rabbit serum are covered with a reasonably uniform, double protein layer ≈130 Å thick. This layer can be built-up to a triple layer ≈275 Å thick by additional exposure to anti-rabbit IgG goat serum. Surface tension forces during the drying process which follows protein deposition appear to affect the thickness and morphology of the protein layers. The oxidation and subsequent change in the morphology of a protein layer exposed to ultraviolet radiation has also been observed using TEM. The destruction of a triple protein layer at a rate of ≈0.5 Å/s is observed for tungsten tips exposed to ≈6 W of UV radiation from a high-pressure mercury arc in laboratory ambient. These results are compared to those obtained from a simple, visual test for protein layer adsorption in which submonolayer coverages of protein can be detected with the unaided eye.  相似文献   

8.
In rotating detonation engines and explosion accidents, detonation may propagate in an inhomogeneous mixture with inert layers. This study focuses on detonation propagation in a stoichiometric H2/O2/N2 mixture with multiple inert layers normal to the detonation propagation direction. One- and two-dimensional simulations considering detailed chemistry are conducted. The emphasis is placed on assessing the effects of inert layer on detonation reinitiation/failure, detonation propagation speed, detonation cell structure and cell size. Specifically, the inert layer thickness and the spacing between two consecutive inert layers are varied. Either detonation reinitiation or failure across the inert layers is observed. It is found that successful detonation reinitiation occurs only at relatively small values of the inert layer thickness and spacing. For each given value of the inert layer spacing, there is a critical inert layer thickness above which detonation fails after crossing the inert layers. This critical inert layer thickness is found to decrease as the inert layer spacing increases. The detailed process of detonation reinitiation across the inert layers is analyzed. The interaction between the transverse shock waves is shown to induce local autoignition/explosion and eventually over-driven detonation development in the reactive layer. The averaged detonation propagation speed in the inhomogeneous mixture is compared to the CJ speed and very good agreement is achieved. This indicates that the inert layer does not affect the detonation propagation speed once successful detonation reinitiation happens. Unlike the detonation speed, the detonation cell structure and cell size are greatly affected by the inert layer results. For the first time, large cellular structure with size linearly proportional to the inert layer spacing is observed for detonation propagation across inert layers. Besides, a double cellular structure is observed for relatively large spacing between inert layers. The formation of double cellular structure is interpreted.  相似文献   

9.
The development of the surface roughness of amorphous ZrO2 layers with different thicknesses, which were laser deposited on nanocrystalline Ag surfaces, was analyzed by atomic force microscopy. With increasing ZrO2 layer thickness first the surface slightly roughens due to island growth, but above a layer thickness of about 30 nm it continuously smoothens. From the power spectral densities it is clear that the smoothing processes are frequency dependent. First the high-frequency surface features vanish before lower roughness frequencies are decreased. Although the starting roughness is only 1 nm, a ZrO2 layer thickness of about 4 μm is necessary to smooth the long-wavelength surface features. From the decrease of the roughness with ZrO2 layer thickness and the observed final spectral densities, the dominant smoothing mechanisms were identified as downhill currents, probably induced by the energetic ions impinging on the substrate surface during deposition. PACS 68.35.Ct; 68.37.Ps  相似文献   

10.
陈城钊  郑元宇  黄诗浩  李成  赖虹凯  陈松岩 《物理学报》2012,61(7):78104-078104
利用超高真空化学气相淀积系统, 基于低温缓冲层和插入应变超晶格的方法, 在Si(100)衬底上外延出厚度约为880 nm的纯Ge层. 采用X射线双晶衍射、高分辨透射电镜、原子力显微镜和光致发光谱分别表征了其结构及光学性质. 测试结果显示外延Ge的X射线双晶衍射曲线半高宽为273", 表面均方根粗糙度为0.24 nm, 位错密度约为1.5×106 cm2. 在室温下观测到外延Ge的直接带跃迁光致发光, 发光峰值位于1540 nm. 表明生长的Si基Ge材料具有良好的结晶质量, 可望在Si基光电子器件中得到应用.  相似文献   

11.
周耐根  周浪 《物理学报》2005,54(7):3278-3283
运用分子动力学方法对负失配条件下的外延铝簿膜中失配位错的形成进行了模拟研究.所采 用的原子间相互作用势为嵌入原子法(EAM)多体势.模拟结果显示:在500K下长时间静态弛豫 ,表面和内部结构完整的外延膜在9—80原子层厚度范围内(约为其热力学临界厚度的3—40 倍)均不形成失配位错,而在薄膜表面预置一个单原子层厚、三个原子直径大小的凸台或凹 坑时,失配位错则能够在15个原子层厚的外延膜上迅速形成:在动态沉积生长条件下,表面 自然形成凹凸,初始厚度为9个原子层厚的外延膜在沉积生长中迅速形成失配位错.在三种条 件下,所形成的位错均为伯格斯矢量与失配方向平行的全刃位错.分析发现:在压应力作用 下,表面微凸台诱发了其侧薄膜内部原子的挤出,造成位错形核;而表面微凹坑则直接因压 应力作用形成了一个表面半位错环核. 关键词: 外延薄膜 失配位错 分子动力学 铝  相似文献   

12.
An increase in Raman intensity of surface phonon polaritons has been observed in free-standing thin slabs (thickness ~ 7 μm) of single- crystal ZnTe with rough surfaces by a conventional Raman-scattering technique at room temperature. The samples with various root-mean- square roughness heights have been prepared by making use of final polishing powders with different mean-grit sizes, and the surface roughness has been confirmed by measuring the intensities of the diffuse scattering of the laser light. The increase of the Raman intensity is proportional to the mean-square height of the surface roughness, and the shift of the dispersion relation is also proportional to it. The frequency shift is explained by a perturbation theory of the surface-roughness-induced scattering.  相似文献   

13.
In this work, we present a surface study by SFM (scanning force microscopy) of three new Ti alloys of composition (in wt%) Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb, developed for biomedical applications. V was not included in these alloys since this element has been reported to be cytotoxic. The surface of these materials has been modified by a thermal treatment in air at 750 °C for different times. As a consequence of this treatment an oxide layer develops on the surface, resulting in both an improvement of the corrosion resistance and an increase of the roughness, which enhances the adhesion of the tissue cells to the implant. SFM has been used to characterize the surface structure and topography of the oxide layers grown on the three alloys. The surface roughness analysis obtained by SFM points to a correlation between the mean square roughness, the thickness of the oxide layer, and the α-phase/β-phase ratio in the base material.  相似文献   

14.
The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.  相似文献   

15.
The rf magnetoresistance of Fe/Cr superlattices is studied for two orientations of the current: parallel and across the superlattice layers. A mutually single-valued correspondence is established between the relative magnetoresistance measured at dc current and the change in the transmission coefficient of electromagnetic waves in the magnetic field. When rf currents flow across the layers, the relative change in the signal amplitude is proportional to twice the change in the electrical resistance of the superlattice and is of opposite sign. It is shown that the rf losses are determined by the surface resistance which is proportional to the superlattice thickness and inversely proportional to its conductivity. An equation is derived for the rf electric field distribution in the superlattice. It is established that when the thickness of the superlattice is small compared with the skin layer depth, field and current components which penetrate through the entire superlattice exist.  相似文献   

16.
Simulations of particle multilayer build-up in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer having an arbitrary coverage of adsorption centers was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to 20) was simulated by assuming short-range interaction potentials for two kinds of particles of equal size. Interaction of two particles of different kind resulted in irreversible and localized adsorption upon their contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm theoretical simulations were performed aimed at determining the particle volume fraction as a function of the distance from the interface, as well as the multilayer film roughness and thickness as a function of the number of layers. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was also predicted theoretically that for low precursor layer density the film thickness increased with the number of layers in a non-linear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was equal to 1.58 of the particle radius, which is close to the closely packed hexagonal layer thickness equal to 1.73. It was concluded by analysing the existing data for colloid particles and polyelectrolytes that the theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and molecular species like polymers or proteins.  相似文献   

17.
Angle resolved XPS (ARXPS) is a powerful tool for the determination of the thickness of ultra-thin films. In the case of high-k dielectric layers, the technique is capable of measuring the thickness of both the high-k layer and intermediate layers of silicon dioxide or metal silicate. The values for layer thickness are in close agreement with those generated by a variety of other techniques. As well as knowing the thickness of these layers, it is important to determine whether the layers are continuous or whether the coverage of the high-k layer is only partial. Using ARXPS, a method has been developed to determine whether the coverage of the high-k material is continuous and, if not, to calculate the fraction of the surface that is covered. The method is described with reference to the layers of Al2O3 grown on SiO2 using atomic layer deposition (ALD). The method is then applied to HfO2 layers produced using ALD on silicon wafers whose surfaces had received three different types of surface treatment. The way in which the layers grow and the nature of the resulting layer were found to depend upon the pre-treatment method. For example, growth on a thermal silicon dioxide surface resulted in complete coverage of HfO2 after fewer ALD cycles than layers grown on an H-terminated surface. The results from ARXPS are compared with those obtained from ToF SIMS that have been shown earlier to be a valuable alternative to the LEIS analysis [1].  相似文献   

18.
Reduced thicknesses can be determined by means of substrate, layer and ratio methods. All these methods require the determination of two unknown quantities — the reduced thickness and a proportional factor which is specific for the method applied. Experimental results can be evaluated by regression, employing equations derived for plane, smooth, homogeneous layers. The aim of this paper is to show how the measured data are influenced by surface roughness, by the energy-dependence of the mean free path of the photoelectrons, and by measurement errors. Moreover, a method is presented for applying the equations derived for ideal layers to results obtained from real structures, taking these influences into account. This evaluation procedure is demonstrated by two examples.  相似文献   

19.
The surface and surface layers of CoxCu100?x inhomogeneous thin films irradiated by an oxygen ion beam for a long time (to 100 min) are studied. The films are obtained by electrolytic deposition. With X-ray photoelectron spectroscopy and conversion electron Mössbauer spectroscopy, it is shown that the irradiation leads to the formation of an oxidized surface layer. The continuity and thickness of the layer depend on the roughness of the initial film. For a cobalt content of 8≤x≤20 at. %, the oxide layer is continuous and nonuniform in thickness, the mean thickness being estimated at several tens of nanometers. The interface between the layer and the underlying film is sharp. The films irradiated are smoother than the asdeposited ones. The formation of the oxide layer is treated in terms of a qualitative model.  相似文献   

20.
The emission spectra of thermally stimulated surface plasmon polaritons (thermally stimulated surface plasmon polaritons) and a blackbody have been analyzed and compared, and the temperature dependence of these spectra has been studied. It has been found that the total energy of the entire ensemble of surface plasmons is proportional to the cube of temperature and their spectrum is red-shifted from the blackbody spectrum. It has been shown that the spectrum of thermally stimulated surface plasmon polaritons obeys the Wien’s displacement law, yet with another constant. The fraction of the photon energy of the conducting layer transferred to the surface plasmons has been estimated. It has been demonstrated numerically by the example of a gold layer that this fraction can exceed 10% for a layer thickness of less than 1 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号