首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
广义二维相关光谱在红外和拉曼光谱研究中的应用   总被引:1,自引:0,他引:1  
介绍广义二维相关分析方法 ,给出了二维相关光谱的广义数学公式及其推广过程。阐述了广义二维相关光谱的基本性质。给出了二维相关在傅立叶变换拉曼和近红外的应用实例 ,以证明广义二维相关光谱在结构分析以及相关性方面的独特效用。  相似文献   

2.
王梦吟  武培怡 《化学进展》2010,22(5):962-974
移动窗口二维相关光谱是一种新的二维相关分析方法,它将移动窗口的概念和二维相关分析方法有效地结合在了一起,利用移动窗口将庞大的光谱数据按矩阵分割成若干个便于操作的子矩阵,用二维相关光谱分别处理,将得到的结果综合分析,用以光谱变量和扰动变量为坐标的等高图表现出来,从中可以非常直观地观察出光谱强度在扰动变量方向上的变化,进而找出引起光谱强度突变的特征扰动点。本文主要介绍了移动窗口二维相关光谱的计算方法、基本特征、影响因素和实际应用,同时还详细介绍了以它为基础改进得到的扰动相关移动窗口二维相关光谱。扰动相关移动窗口二维相关光谱包括同步图和异步图,它不仅能很好地反映出引起光谱强度突变的特征扰动,还能详尽地描述出光谱强度在扰动过程中的变化情况。  相似文献   

3.
二维相关振动光谱技术   总被引:8,自引:0,他引:8  
从发展历史、计算方程、性质规则等方面系统地介绍了近年来发展起来的二维相关光谱技术.结合各种常见的一维振动光谱, 如红外、拉曼、荧光、近红外-红外等光谱举例阐述了二维振动光谱的优势及其普适性.介绍了在广义二维相关光谱理论上最新延伸发展起来的二维样品-样品相关技术和二维杂化相关技术的基本理论, 并将之与传统的二维变量-变量相关技术(广义二维相关光谱)进行了比较.  相似文献   

4.
二维相关荧光光谱技术   总被引:2,自引:0,他引:2  
余婧  武培怡 《化学进展》2006,18(12):1691-1702
从发展历史、计算方程、一般规则和特有性质等方面系统地介绍了近年来在二维相关荧光光谱技术方面的方法探索和应用进展。以不同的外扰方式,如浓度、激发波长、猝灭以及其他如pH等分类,举例阐述了二维荧光相关光谱的可操作性及其应用,并与普通一维荧光光谱比较,说明了二维荧光相关光谱技术的优势。  相似文献   

5.
广义二维相关光谱及其在分析领域中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
广义二维相关光谱(generalized two-dimensional correlation spectroscopy)的理论提出至今, 得到了国际学术界的极大关注, 其分析方法已经在分析领域中被广泛应用. 文中在叙说广义二维相关光谱的数学处理过程及其谱图的物理意义的同时, 列举了在化学分析和分子生物学等领域中的有机溶剂成分分析、生物分子在不同pH中的特性分析和蛋白结构分析等应用实例, 并详细地对广义二维相关光谱理论和分析方法进行了评述.  相似文献   

6.
广义二维相关光谱学进展   总被引:5,自引:0,他引:5  
介绍了一种重要的广义二维相关光谱方法,对其基本原理、获取谱图的方法、数学计算过程、谱图的性质及其解释规则等作了详细的介绍,并介绍了其在化学、物理、生物、医药等领域中的应用。  相似文献   

7.
王梦吟  赖祖亮  武培怡 《化学学报》2009,67(16):1917-1922
二维相关光谱是一项将光谱强度看作两个独立的光谱变量的函数的技术, 它是由动态光谱经过数学转化后得到的. 在扰动过程中, 动态光谱等于实际测得的光谱减去参考谱, 参考谱的选择是任意的, 甚至可以为0, 但是在实际应用时, 人们逐渐发现参考谱的选择会对二维相关光谱产生一定的影响. 本篇文章采用模拟的方法, 建立光谱模型, 光谱强度按e指数形式单调变化, 比较以平均谱为参考谱和不设参考谱得到的二维相关光谱图, 分析它们的区别, 在不同参考谱条件下, 利用二维相关光谱分离重叠峰, 得到的结果也不相同, 将两种条件综合利用可以得到更多更正确的信息.  相似文献   

8.
二维相关红外光谱分析技术在高分子表征中的应用   总被引:1,自引:0,他引:1  
侯磊  武培怡 《高分子学报》2022,53(5):522-538
二维相关红外光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注.高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果 .本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究.希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.  相似文献   

9.
红外光谱法对肉苁蓉径向不同部位的分析与评价   总被引:9,自引:0,他引:9  
采用傅里叶变换红外光谱、二阶导数谱和二维相关红外光谱技术对肉苁蓉由表及里3个部位的药材粉末及其水提物和醇提物进行了分析与评价研究.结果表明,肉苁蓉不同部位的一维光谱非常相似,三者相似系数分别为0.9605,0.944和0.976;二阶导数谱中峰位和峰强的差异明显.1430~1700 cm-1范围内的二维相关谱中皮部自动峰有3个,而中部及髓部均为4个,更直观的反映出三者的差异.不同部位水提物和醇提物的分析结果进一步明确了肉苁蓉皮部芳香类、环烯醚萜类及糖苷类物质与中部和髓部存在明显不同,而髓部的水溶性多糖、半乳糖醇和苯乙醇苷类物质均高于其它部位.可见红外光谱法结合二维相关红外光谱技术为同种药材不同部位的细微差异分析和评价提供了一种快速、全面和客观的方法和手段.  相似文献   

10.
基于聚(N-异丙基-2-甲基丙烯酰胺)(PNiPMA)在升温和降温两个过程中测得的变温红外光谱构筑样本-样本杂合二维相关(Hybrid 2D Correlation)光谱,揭示其在热诱导相变过程中初始组分的恢复程度、相转变温度以及转变速率等物理参数的可逆性.  相似文献   

11.
The objective of this paper was to apply two‐dimensional (2D) near‐infrared (NIR) correlation spectroscopy to the discrimination of three species of Dendrobium. Generalized 2D‐NIR correlation spectroscopy was able to enhance spectral resolution, simplify the spectrum with overlapped bands and provide information about temperature‐induced spectral intensity variations that was hard to obtain from one‐dimensional NIR spectroscopy. The FT‐NIR spectra were measured over a temperature range of 30–140°C. The 2D synchronous and asynchronous spectra showed remarkable differences within the range of 5600–4750 cm−1 between different species of Dendrobium. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.  相似文献   

13.
Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.  相似文献   

14.
Nanodiamond powders have excellent mechanical, chemical, physical, and optical properties. In this research, two non-pure groups of nanodiamond particles labeled as ND1 and ND2 have been selected for purity evaluation by means of absorbance and scattering analysis. The nanodiamond powders have been used for Raman and dynamic light scattering (DLS), Fourier transform infrared (FTIR) and UV–Vis absorbance approaches. The Raman spectra show a weak diamond signal in ND2 as purity and 4 basic set of bands. FTIR absorbance spectroscopy was used in the spectral range of 400–3600 cm?1. The results show that ND2 is almost non-absorbance with wavelength. It means that the diamond phase purity of ND2 is greater than ND1, and ND2 shows a better structure of diamond. UV–Vis absorption spectra of the sample have been recorded in the spectral range of 200–800 nm by means of nanodiamond suspended in methanol (NDM). The UV–Vis absorbance of NDM1 is stronger than NDM2 at the same concentration. Therefore the diamond phase purity of ND2 is greater than ND1. Particle size distribution and zeta potential of DNDs were investigated by DLS method. Finally the structure and phase of samples have been evaluated by X-ray diffraction (XRD) for confirmation.  相似文献   

15.
Two dimensional (2D) homonuclear 1H J-resolved (JRES) nuclear magnetic resonance spectroscopy is increasingly used in metabolomics. This approach visualises metabolite chemical shifts and scalar couplings along different spectral dimensions, thereby increasing peak dispersion and facilitating spectral assignments and accurate quantification. Here, we optimise the processing of 2D JRES spectra by evaluating different window functions, a traditional sine-bell (SINE) and a combined sine-bell-exponential (SEM) function. Furthermore, we evaluate different projection methods for generating 1D projected spectra (pJRES). Spectra were recorded from three disparate types of biological samples and evaluated in terms of sensitivity, reproducibility and resolution. Overall, the SEM window function yielded considerably higher sensitivity and comparable spectral reproducibility and resolution compared to SINE, for both 1D pJRES and 2D JRES datasets. Furthermore, for pJRES spectra, the highest spectral quality was obtained using SEM combined with skyline projection. These improvements lend further support to utilising 2D J-resolved spectroscopy in metabolomics.  相似文献   

16.
A series of covalent ferrocene–BODIPY–fullerene triads with the ferrocene groups conjugated to the BODIPY π-system and the fullerene acceptor linked at the boron hub by a common catecholpyrrolidine bridge were prepared and characterized by 1D and 2D NMR, UV/Vis, steady-state fluorescence spectroscopy, high-resolution mass spectrometry, and, for one of the derivatives, X-ray crystallography. Redox processes of the new compounds were investigated by electrochemical (CV and DPV) methods and spectroelectrochemistry. DFT calculations indicate that the HOMO in all triads was delocalized between ferrocene and BODIPY π-system, the LUMO was always fullerene-centered, and the catechol-centered occupied orbital was close in energy to the HOMO. TDDFT calculations were indicative of the low-energy, low-intensity charge-transfer bands originated from the ferrocene–BODIPY core to fullerene excitation, which explained the similarity of the UV/Vis spectra of the ferrocene–BODIPY dyads and ferrocene–BODIPY–fullerene triads. Photophysical properties of the new triads as well as reference BODIPY–fullerene and ferrocene–BODIPY dyads were investigated by pump-probe spectroscopy in the UV/Vis and NIR spectral regions following selective excitation of the BODIPY-based antenna. Initial charge transfer from the ferrocene to the BODIPY core was shown to outcompete sub-100 fs deactivation of the excited state mediated by the catechol bridge. However, no subsequent electron transfer to the fullerene acceptor was observed. The initial charge separated state relaxes by recombination with a time constant of 150–380 ps.  相似文献   

17.
Two‐dimensional exchange spectroscopy (2D EXSY) is a powerful method to study the interconversion (chemical exchange) of molecular species in equilibrium. This method has recently been realized in femtosecond 2D‐IR spectroscopy, dramatically increasing the time resolution. However, current implementations allow the EXSY signal (and therefore the chemical process of interest) only to be tracked during the lifetime (T1) of the observed spectroscopic transition. This is a severe limitation, as typical vibrational T1 are only a few ps. An IR/Vis pulse sequence is presented that overcomes this limit and makes the EXSY signal independent of T1. The same pulse sequence allows to collect time‐resolved IR spectra after electronic excitation of a particular chemical species in a mixture of species with strongly overlapping UV/Vis spectra. Different photoreaction pathways and dynamics of coexisting isomers or of species involved in different intermolecular interactions can thus be revealed, even if the species cannot be isolated because they are in rapid equilibrium.  相似文献   

18.
A novel dihydroisocoumarin, 3,4‐dihydro‐6,8‐dihydroxy‐3‐(2′‐acetyl‐3′‐hydroxy‐5′‐methoxy)methyl‐1H‐[2]benzopyran‐1‐one, was isolated from the chloroform extract of the sap of the traditional herb Aloe vera. Its structure was determined by high‐resolution negative fast atom bombardment mass spectrometry (MS), 2D NMR spectroscopy and x‐ray crystallography. The molecular structure was elucidated by 2D NMR analysis. The complete assignment of the 1H and 13C NMR spectra of this compound was performed by using 1H detected one‐bond heteronuclear multiple quantum correlation (HMQC) and long‐range (two and three bonds) heteronuclear multiple quantum bond correlation (HMBC) experiments. Detailed analyses of the one‐ and two‐dimensional NMR techniques are presented in additional to the spectral properties (MS, IR and UV). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
New optical materials containing coumarin (3-(3-(4-(dimethylamino)phenyl)propenoyl)-2H-chromen-2-one) in silica are reproducibly prepared by a solgel technique and characterized with UV/Vis and luminescence spectroscopy. The incorporation of the coumarin molecules in the silica gels is monitored with UV/Vis spectroscopy. The coumarin doped gels change their color with time which is attributed to a protonation of the dimethylamino group of the coumarin molecules during aging of the gels and is proved by UV/Vis spectroscopy. The process of protonation of the dimethylamino group is described as a second order reaction. The luminescence spectra of the coumarin doped gels at room temperature also are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号