首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of quadrupole linear ion trap mass spectrometer, Q TRAP trade mark LC/MS/MS system (Q TRAP trade mark ), was evaluated for its performance in two studies: firstly, the in vitro metabolism of gemfibrozil in human liver microsomes, and, secondly, the quantification of propranolol in rat plasma. With the built-in information-dependent-acquisition (IDA) software, the instrument utilizes full scan MS in the ion trap mode and/or constant neutral loss scans as survey scans to trigger product ion scan (MS(2)) and MS(3) experiments to obtain structural information of drug metabolites 'on-the-fly'. Using this approach, five metabolites of gemfibrozil were detected in a single injection. This instrument combines some of the unique features of a triple quadrupole mass spectrometer, such as constant neutral loss scan, precursor ion scan and multiple reaction monitoring (MRM), together with the capability of a three-dimensional ion trap. Therefore, it becomes a powerful instrument for metabolite identification. The fast duty cycle in the ion trap mode allows the use of full product ion scan for quantification. For the quantification of propranolol, both MRM mode and full product ion scan in the ion trap mode were employed. Similar sensitivity, reproducibility and linearity values were established using these two approaches. The use of the product ion scan mode for quantification provided a convenient tool in selecting transitions for improving selectivity during the method development stage.  相似文献   

2.
The use of a hybrid triple quadrupole-linear ion trap (QqQ(LIT)) mass spectrometer system for a comprehensive study of fragmentation mechanisms is described. The anxiolytic drug, buspirone, was chosen as a model compound for this study. With the advent of a QqQ(LIT) instrument, both the traditional quadrupole and the new linear ion trap scans (LIT) could be performed in a single LC run. In the past, a sample had to be run on two different instruments, namely, a triple quadrupole instrument (QqQ) and a 3D ion trap (3D IT) to obtain similar information. With the new QqQ(LIT) technology, collision-induced dissociation (CID) occur in a quadrupole collision cell, q2, and fragment ions are trapped and analyzed in Q3 operated in LIT mode. In this work, high-sensitivity product ion spectra of buspirone were obtained from the one-stage 'Enhanced Product Ion' scan (EPI) with rich product ions and no low mass cut-off. Furthermore, detailed fragmentation pathways were elucidated by further dissociation of each of the fragment ions in the EPI spectrum using MS(3) mode in the same run. The MS(3) scan was performed by incorporating CID in q2, and trapping, cooling, isolation, and resonance-excitation in Q3 when operating in LIT mode. This approach allowed unambiguous assignment of all fragment ions quickly with fewer experiments and easier interpretation than the previous approach. The overall sensitivity for obtaining complete fragment ion data was significantly improved for QqQ(LIT) as compared with that of QqQ and 3D IT mass spectrometers. This is beneficial for structure determination of unknown trace components. The method allowed structure determination of metabolites of buspirone in rat microsomes at 1 microM concentration, which was a 10-fold lower concentration than was needed for QqQ or 3D IT instruments. The QqQ(LIT) instrument provided a simple, rapid, sensitive and powerful approach for structure elucidation of trace components.  相似文献   

3.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

4.
The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis.  相似文献   

5.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

6.
A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS.  相似文献   

7.
The use of a new hybrid quadrupole/linear ion trap known as the Q TRAP offers unique benefits as a LC-MS-MS detector for both small and large molecule analyses. The instrument combines the capabilities of a triple quadrupole mass spectrometer and ion trap technology on a single platform. Product ion scans are conducted in a hybrid fashion with the fragmentation step accomplished via acceleration into the collision cell followed by trapping and mass analysis in the Q3 linear ion trap. This results in triple quadrupole fragmentation patterns with no inherent low molecular mass cutoff. In-trap fragmentation is also possible in order to provide triple MS (MS3) capabilities. There are also several scan modes that are not possible on conventional instruments that enable identification of analytes within complex biological matrixes for subsequent high sensitivity product ion scans. This report will describe the new hybrid instrument and the principles of operation, and also provide examples of the unique scan modes and capabilities of the Q TRAP for LC-MS-MS detection in metabolism identification.  相似文献   

8.
Preliminary metabolic profiling of a drug under pre-clinical development revealed the presence of a minor unknown metabolite with a positive ion electrospray ionization (ESI) mass spectrum identical to that of the unchanged compound. Since the low concentration of the compound did not allow any additional experiments, preparative bioconversion using fungi was used to obtain a substantial amount of the molecule. Negative ion ESI-MS and tandem mass spectrometry (MS/MS) in combination with accurate mass measurements obtained on a quadrupole/time-of-flight instrument (Q-TOF) led to the positive identification of a hydroxylamide sulfoconjugated metabolite.  相似文献   

9.
Bioanalytical support of plasma pharmacokinetic (PK) studies for drug discovery programs primarily involves the quantitative analysis of dosed compounds using liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/MS/MS) operated in selected reaction monitoring (SRM) mode. However, there is a growing need for information on the metabolism of new chemical entities (NCEs), in addition to the time-concentration profiles from these studies. In this paper, we present a novel approach to not only quantify parent drugs with SRM, but also simultaneously screen for metabolites using a hybrid triple quadrupole/linear ion trap (QqQ(LIT)) instrument. This was achieved by incorporating both the conventional SRM-only acquisition of parent compounds and the SRM-triggered information-dependent acquisition (IDA) of potential metabolites within the same scan cycle during the same LC/MS/MS run. Two test compounds were used to demonstrate the applicability of this approach. Plasma samples from PK studies were processed by simple protein precipitation and the supernatant was diluted with water before injection. The fast scanning capability of the linear ion trap allowed for the information-dependent acquisition of metabolite MS/MS spectra (<1 s/scan), in addition to the collection of adequate data points for SRM-only channels. The MS/MS spectra obtained from potential metabolites in post-dose samples correlated well with the spectra of the parent compounds studied, therefore providing additional confirmatory structure information without the need for repetitive analyses. Relative quantitative time-concentration profiles of identified metabolites were also obtained. Furthermore, this articulated SRM+SRM-IDA approach generated equivalent quantitative results for parent compounds to those obtained by conventional SRM-only analysis. This approach has been successfully used to support discovery PK screening programs.  相似文献   

10.
This work describes a new method for the quantitation of trace amounts of sulfamethazine (SMZ) and its main metabolite, N4-acetylsulfamethazine (Ac-SMZ), in swine urine, using high-performance liquid chromatography (HPLC) tandem mass spectrometric analysis of crude urine after addition of internal standard and simple dilution with water. The aim was to determine whether residues of this sulfamidic drug, normally administered to swine in order to prevent infectious diseases, were present in urine at levels lower than those permitted by regulatory authorities before human consumption (EU Project SMT, contract number CT 96-2092). A 10 microL volume of diluted urine was injected into a very short, narrow-bore chromatographic column (Zorbax SB-C18 2.1 i. d. x30 mm length, 3.5 microm pore size). Elution of the analytes of interest was achieved in less than seven minutes using a rapid gradient (from 20 to 80% methanol in 3 minutes). Either a PE Sciex API 365 triple quadrupole (QqQ), operated in the selected reaction monitoring (SRM) mode, or a Finnigan LCQ ion trap (IT) mass spectrometer, operated in narrow-range product ion scan, was used as the final detector. Electrospray (ESI) was used as the ionization technique. A comparison of the two tandem mass spectrometers was performed by analyzing the same set of test samples, at three concentration levels, on three different days. Linearity of responses of the calibration standards, intra- and inter-assay precision of the samples, specificity and limits of detection were evaluated for both systems. Both the QqQ and the IT instrument was suitable for rapid, sensitive and specific determination of the analytes, although the overall performance of the QqQ was slightly superior in terms of linearity, precision and sensitivity.  相似文献   

11.
Liquid chromatography in combination with mass spectrometry (LC/MS) is a superior analytical technique for metabolite profiling and identification studies performed in drug discovery and development laboratories. In the early phase of drug discovery the analytical approach should be both time‐ and cost‐effective, thus providing as much data as possible with only one visit to the laboratory, without the need for further experiments. Recent developments in mass spectrometers have created a situation where many different mass spectrometers are available for the task, each with their specific strengths and drawbacks. We compared the metabolite screening properties of four main types of mass spectrometers used in analytical laboratories, considering both the ability to detect the metabolites and provide structural information, as well as the issues related to time consumption in laboratory and thereafter in data processing. Human liver microsomal incubations with amitriptyline and verapamil were used as test samples, and early‐phase ‘one lab visit only’ approaches were used with all instruments. In total, 28 amitriptyline and 69 verapamil metabolites were found and tentatively identified. Time‐of‐flight mass spectrometry (TOFMS) was the only approach detecting all of them, shown to be the most suitable instrument for elucidating as comprehensive metabolite profile as possible leading also to lowest overall time consumption together with the LTQ‐Orbitrap approach. The latter however suffered from lower detection sensitivity and false negatives, and due to slow data acquisition rate required slower chromatography. Approaches with triple quadrupole mass spectrometry (QqQ) and hybrid linear ion trap triple quadrupole mass spectrometry (Q‐Trap) provided the highest amount of fragment ion data for structural elucidation, but, in addition to being unable to produce very high‐important accurate mass data, they suffered from many false negatives, and especially with the QqQ, from very high overall time consumption. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Capillary liquid chromatography (LC) using a 320 microns column and a flow rate of 10 microL/min has been coupled to an ion trap mass spectrometer using electrospray ionisation (ESI) to enable the rapid and effective identification of metabolites in urine, following oral administration of a novel human neutrophil elastase inhibitor, GW311616. Metabolites were identified from their mass (MS) spectra and tandem (MS/MS) mass spectra using minimal sample (1 microL of urine) and no sample pretreatment. Sensitivity assessment has shown that both molecular weight and structural information is obtainable on as little as 5 pg of compound, making the capillary LC/ion trap system as described an ideal analytical tool for the detection and characterisation of low level metabolites in biofluids (particularly when sample volume is limited). This level of detection was unattainable using a triple quadrupole mass spectrometer operating in full-scan mode, although 200 fg on column was detected using selected reaction monitoring target analysis.  相似文献   

13.
Multiple ion monitoring (MIM)‐dependent acquisition with a triple quadrupole‐linear ion trap mass spectrometer (Q‐trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM‐EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)‐EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM‐EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4‐ethylphenol in liver microsome incubations. Results showed that the MIM‐EPI‐based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high‐throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Rapid information on metabolic profiling is required to evaluate the structural liabilities of drug candidates in early drug discovery. In this study, a sensitive and rapid semi-quantitative method was developed to simultaneously monitor the drug candidate and metabolites as well as collect tandem mass (MS/MS) spectra for subsequent metabolite identification. The simultaneous semi-quantitation and identification of metabolites in fresh hepatocytes is achieved using high-performance liquid chromatography (HPLC) coupled with a hybrid quadrupole linear ion trap. The survey experiment consists of monitoring multiple-reaction monitoring (MRM) transitions for the internal standard, the parent, and 48 MRM transitions designed to cover the most common phase I and II biotransformations. An information-dependent acquisition (IDA) method was employed to trigger product ion scans above the MRM signal threshold. Three biotransformations of a lead compound have been identified through enhanced product ion scans and the respective MRM transitions of those metabolites were selected for semi-quantitation. Parent disappearance and formation of the metabolites as a function of incubation time in five different species were monitored by their respective MRM responses. The method provides the necessary sensitivity to detect minor metabolites in a relevant therapeutic concentration range. Enzymatic turnover of the parent and the metabolites in different species are revealed based on the different initial concentrations of the parent. This methodology integrates the parent disappearance, metabolite identification, and the formation of the metabolites along the time course using a single rapid LC/MS/MS analysis. This method can be used as a complementary tool to the conventional method of metabolic profiling. It provides a rapid and sensitive initial profile of the metabolism of potential structural series at the lead selection stage. The method can also be incorporated into the overall metabolite profiling scheme to evaluate the drug candidates in drug discovery.  相似文献   

15.
Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways.  相似文献   

16.
Optimisation of the activation parameters for ion trap mass spectrometric analysis of the chlormequat cation using simplex optimisation enabled the product ion (m/z 58) response to be improved 1000-fold. A comparison of the sensitivity of the optimised ion trap mass spectrometer with that of a triple quadrupole mass spectrometer for liquid chromatography/tandem mass spectrometry (LC/MS/MS) showed that similar limits of detection (LODs) could be achieved. For the MS/MS transition of the (35)Cl precursor to the most abundant product, LODs were 0.8 ng cation mL(-1) (0.004 mg cation kg(-1) pear equivalent) and 1.0 ng cation mL(-1) (0.005 mg cation kg(-1) pear equivalent) on the triple quadrupole and ion trap instrument, respectively.  相似文献   

17.
Liu M  Zhao S  Wang Z  Wang H  Shi X  Lü Z  Xu H  Wang H  Du Y  Zhang L 《Journal of separation science》2011,34(22):3200-3207
Epimedin C is one of the major bioactive constituents of Herba Epimedii. The aim of this study is to characterize and elucidate the structure of metabolites in the rat after administration of epimedin C. Metabolite identification was performed using a predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (pMRM-IDA-EPI) scan in positive ion mode on a hybrid triple quadrupole-linear ion trap mass spectrometer. A total of 18 metabolites were characterized by the changes in their protonated molecular masses, their MS/MS spectrum and their retention times compared with those of the parent drug. The results reveal possible metabolite profiles of epimedin C in rats; the metabolic pathways including hydrolysis, hydroxylation, dehydrogenation, demethylation and conjugation with glucuronic acid and different sugars were observed. This study provides a practical approach for rapidly identifying complicated metabolites, a methodology that could be widely applied for the structural characterization of metabolites of other compounds.  相似文献   

18.
Within the European Union the use of anabolic steroids for promoting growth and improving meat-to-fat ratio in food-producing animals has been banned since 1988. For the unequivocal identification of hormone residues in a complex matrix such as meat we have developed a rapid, specific and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, in combination with a simple extraction procedure based on the matrix solid-phase dispersion (MSPD). The performances of a triple quadrupole (QqQ) and a quadrupole/time-of-flight (QqTOF) were compared: the QqQ mass spectrometer was found to be more sensitive for almost all studied analytes, but the selectivity was superior using the QqTOF system; the full-scan spectra (acquired without losing sensitivity), mass accuracy and resolution of the hybrid instrument enabled a more probatory analyte identification than that obtained selecting two multiple-reaction monitoring (MRM) transitions with a QqQ. Average recoveries ranged from 80 to 100%, and the detection capabilities (CCbetas) were less than 1.06 ppb with the QqQ instrument and less than 5.20 ppb with the QqTOF instrument for the bovine meat, which proved to be the most complex matrix.  相似文献   

19.
The fragmentation behaviour of seven pairs of isomeric flavone/isoflavone aglycones (solely hydroxylated and/or methoxylated) was studied using ion trap mass spectrometry with atmospheric pressure ionisation (API, both electrospray and APCI) in the positive and negative ion modes. A major difference was found in the neutral loss of 56 u, which was a common feature of all isoflavones in API(+). It was identified as a double loss of CO by accurate mass tandem mass spectrometric (MS/MS) measurements using a hybrid quadrupole time-of-flight (Q-TOF) instrument. Fragmentation of daidzein with (13)C-isotope labelling of the carbon C2 showed that this double loss occurred from the central ring of the molecule. A mechanism for this selective fragmentation is given. Further isoflavone-specific fragmentations were used to develop a guideline for the identification of isoflavone structures. A software-based neutral loss scan of 56 u in the API(+)-MS(2) mode was applied to extracts of leaves of Lupinus albus and to soy flour. The structure elucidation guideline allowed identification of hydroxy and/or methoxy isoflavones. Structures could be confirmed for those available as reference compounds.  相似文献   

20.
In vitro metabolic stability experiments using microsomes or other liver preparations are important components in the discovery and lead-optimization stages of compound selection in the pharmaceutical industry. Currently, liquid chromatography-tandem mass spectrometric (LC-MS/MS) support of in vitro metabolic stability studies primarily involves the monitoring of disappearance of parent compounds, using selected reaction monitoring (SRM) on triple-quadrupole instruments. If moderate to high turnover is observed, separate metabolite identification experiments are then conducted to characterize the biotransformation products. In this paper, we present a novel method to simultaneously perform metabolite screening in addition to the quantitative stability measurements, both within the same chromatographic run. This is accomplished by combining SRM and SRM-triggered, information-dependent acquisition (IDA) of MS/MS spectra on a hybrid triple-quadrupole linear ion trap (QqQLIT) mass spectrometer. Microsomal stability experiments using model compounds, bufuralol, propranolol, imipramine, midazolam, verapamil and diclofenac, were used to demonstrate the applicability of our approach. This SRM + SRM-IDA approach generated metabolic stability results similar to those obtained by conventional SRM-only approach. In addition, MS/MS spectra from potential metabolites were obtained with the enhanced product ion (EPI) scan function of LIT during the same injection. These spectra were correlated to the spectra of parent compounds to confirm the postulated structures. The time-concentration profiles of identified metabolites were also estimated from the acquired data. This approach has been successfully used to support discovery programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号