首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field emission studies of WO2.72 nanowires synthesized by a solvothermal method have been performed in the planar diode configuration under ultra high vacuum conditions. Fowler–Nordheim plots obtained from the current-voltage characteristics follow the quantum mechanical tunneling process and a current density of ∼8.3×106 μA/cm2 can be drawn at an applied electric field of 2 V/μm. The field enhancement factor is 33025, while the turn-on field is only 1.4 V/μm. The emission current-time plot recorded at the pre-set value of emission current of 1 μA over a period of more than 3 h exhibits an initial increase and a subsequent stabilization of the emission current. The results reveal that the WO2.72 nanowire emitters synthesized by the solvothermal method are promising cathode materials for practical applications.  相似文献   

2.
Field emission in diamond and graphite-like polycrystalline films is investigated experimentally. It is shown that the emission efficiency increases as the nondiamond carbon phase increases; for graphite-like films the threshold electric field is less than 1.5 V/μm, and at 4 V/μm the emission current reaches 1 mA/cm2, while the density of emission centers exceeds 106 cm−2. A general mechanism explaining the phenomenon of electron field emission from materials containing graphite-like carbon is proposed. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 1, 56–60 (10 July 1998)  相似文献   

3.
The present work describes the field emission characteristics of conducting polymer coated multi walled carbon nanotubes (MWNTs) field emitters fabricated over flexible graphitized carbon cloth. Nanocomposites involving the combination of MWNTs and conducting polymers polyaniline (PANI) and polypyrrole (PPy) have been prepared by in-situ polymerization method and have been characterized using scanning electron microscopy and transmission electron microscopy. Using spin coating method, field emitters based on PANI/MWNTs and PPy/MWNTs over flexible graphitized carbon cloth have been prepared. The field emission characteristics have been studied using an indigenously fabricated set up in a vacuum chamber with a base pressure of 2 × 10−5 Pa and the results are discussed. Our results display that the field emission performance of the emitters depends strongly on the work function of the emitting material. Low turn on emission field of 2.12 V/μm at 10 μA/cm2 and high emission current density of 1 mA/cm2 at 3.04 V/μm have been observed for PANI/MWNTs field emitter.  相似文献   

4.
Multi-wall carbon nanotubes (MWNTs) have a great commercial potential as electron field emitters, but suffer from fundamental problems such as stability and brightness. By depositing the MWNTs with nano-sized ruthenium dioxide (RuO2) particles, a new high performance emitter has been developed. When compared to MWNTs, the MWNTs impregnated with 1–2 nm sized RuO2 have superior and more efficient electrical characteristics. MWNTs supported by a silicon substrate showed a reduction in the onset voltage from 5.4 to 4 V/μm after RuO2 impregnation. The long-term stability of the impregnated MWNTs is also demonstrated with only a 20% increase in applied voltage required after 700 h operation at 40 mA/cm2.  相似文献   

5.
Micro/nano structures have been obtained by laser surface treatment on sintered LaB6 pellets employing a picosecond pulsed Nd:YAG laser at a pressure of ∼1×10−3 mbar. The X-ray diffraction pattern of the laser treated pellet shows a set of well defined diffraction peaks, indexed to the cubic phase of LaB6 only. The scanning electron microscope studies reveal formation of micro and nano structures upon laser treatment and the resultant surface morphology is found to be strongly influenced by the laser fluence. Field electron emission studies made on the LaB6 pellet, treated with optimized laser fluence, have been performed in a planar diode configuration under ultra high vacuum conditions. The threshold field required to draw an emission current density of ∼10 μA/cm2 has been found to be ∼2.3 V/μm and a current density of ∼530 μA/cm2 has been drawn at an applied field of 5.2 V/μm. The Fowler-Nordheim plot is found to be linear in accordance with the quantum mechanical tunneling phenomenon, confirming the metallic nature of the emitter. The emission current at the pre-set value ∼10 μA shows very good stability over a period of more than 3 hours. The present results emphasize the effectiveness of a picosecond laser treatment towards fabrication of a nano metric LaB6 emitter for high current density applications.  相似文献   

6.
Nanotip arrays of amorphous carbon with embedded hexagonal diamond nanoparticles were prepared at room temperature for use as excellent field emitters by a unique combination of anodic aluminum oxide (AAO) template and filtered cathodic arc plasma (FCAP) technology. In order to avoid nanopore array formation on the AAO surface, an effective multi-step treatment employing anodization and pore-widening processes alternately was adopted. The nanotips were about 100 nm in width at the bottom and 150 nm in height with density up to 1010 cm−2. Transmission electron microscopy investigation indicates that many nanoparticles with diameters of about 10 nm were embedded in the amorphous carbon matrix, which was proved to be hexagonal diamond phase by Raman spectrum and selected-area electron diffraction. There is no previous literature report on the field emission properties of hexagonal diamond and its preparation at room temperature under high-vacuum condition. The nanotip arrays with hexagonal diamond phase exhibit a low turn-on field of 0.5 V/μm and a threshold field of 3.5 V/μm at 10 mA/cm2. It is believed that the existence of hexagonal diamond phase has improved the field emission properties.  相似文献   

7.
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ∼3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.  相似文献   

8.
Diamond nanocone, graphitic nanocone, and mixed diamond and graphitic nanocone films have been synthesized through plasma enhanced hot filament chemical vapor deposition (HFCVD). The field emission properties of these films have been experimentally investigated. The studies have revealed that all three kinds of nanocone films have excellent field electron emission (FEE) properties including low turn-on electric field and large emission current at low electric field. Compared with the diamond nanocone films (emission current of 86 μA at 26 V/μm with the turn-on field of 10 V/μm), the graphitic nanocone films exhibit higher FEE current of 1.8×102 μA at 13 V/μm and a lower turn-on filed of 4 V/μm. The mixed diamond and graphitic nanocone films have been found to posses FEE properties similar to graphitic nanocone films (emission current of 1.7×102 μA at 20 V/μm with the turn-on field of 5 V/μm), but have much better FEE stability than the graphitic nanocone films. PACS 81.07.Bc; 81.05.Uw; 79.70.+q  相似文献   

9.
The field emission properties of multi-walled carbon nanotubes were examined using a screen-printed thick film with a diode-type configuration in a vacuum. The effects of various concentrations of two different ceramic fillers, indium tin oxide (ITO) powder and a glass frit, on the emission current density and turn-on field were evaluated. The emission properties of both pastes were dependent on the amount of filler. Considerably enhanced emission properties were obtained with the paste containing 5–10 wt.% of either ITO or the glass frit compared with those without a filler. The paste containing the ceramic filler showed enhanced emission properties compared with that containing the 5 wt.% Ag conventionally used, which confirmed the importance of the filler. The paste containing 10 wt.% ITO represented an emission current density of 176.4 μA/cm2 at 5 V/μA, a turn-on field of 1.87 V/μA for an emission current density of 1 μA/cm2 and a field enhancement factor of 7580. The paste formulation was also found to be suitable for fine patterning using UV-lithography techniques. A long-term stability test for 110 h of a paste containing 10 wt.% ITO revealed a half-life of approximately 30000 h, which is appropriate for commercial applications.  相似文献   

10.
The frequency up-conversion, an efficient laser emission and amplification in Er3+:LiAl5O8 phosphors co-doped with Yb3+ and Zn2+ phosphor powders in the 520–560, 640–680 nm regions and at ∼1.5 μm, respectively, have been reported. The emission corresponds to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation into the intermediated 4I11/2 level using ∼980 nm radiation from a CW laser. Possible mechanisms involved for the up-conversion processes based on the energy level matching scheme, the pump-power dependence and the dynamical behaviour have been discussed. The effect of the addition of Yb3+ and Zn2+ for the amplification in the 1.5 μm eye-safe telecommunication window has been elaborated and characterized in detail.  相似文献   

11.
Patterned gallium nitride nanowires and nanodots have been grown on n-Si (100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/μm to achieve a current density of 0.01 mA/cm2 and an enhanced field emission current density as high as 0.156 mA/cm2 at an applied field of 11 V/μm. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties.  相似文献   

12.
A new type host of germanate glass (GeO2− BaO−BaF2−Ga2O3−La2O3) codoped with Tm2O3 has been investigated for application as laser material. It possesses a large emission cross section with the value of 9.3×10−21 cm2 at 1.8 μm. Judd-Ofelt intensity parameters and radiative transition probability are calculated and analyzed by Judd-Ofelt theory and absorption spectra. The infrared emission spectra at 1.8 μm have been obtained by using a 794 nm laser diode as excitation resource. The emission intensity ratio of 1.8 (3F43H6) to 1.47 μm (3H43F4) increases, while the experimental lifetime of the Tm3+:3H4 level decreases by increasing Tm2O3 concentration, which is attributed to the presence of a cross relaxation process. The most intensive emission at 1.8 μm is achieved from the germanate glass with the concentration of Tm2O3 reaches 1.0 wt%. The extended overlap integral method is used to calculate the microparameter of the energy transfer and the critical distance, which are derived to better understand the energy transfer process of thulium ions in the germanate glass responsible for emission at 1.8 μm.  相似文献   

13.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

14.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

15.
Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNT emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron lengths by sonication in an acidic solution. Cut SWNTs were attached to the gold surface by the reaction between the thiol groups and the gold surface. The field-emission measurements showed that the turn-on field was 4.8 V/μm at an emission current density of 10 μA/cm2. The current density was 0.5 mA/cm2 at 6.6 V/μm. This approach provides a novel route for fabricating CNT-based field-emission displays. Received: 3 May 2002 / Accepted: 6 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-54/279-8298, E-mail: ce20047@postech.ac.kr  相似文献   

16.
Uniform cathode deposits (longer than 15 mm), containing multiwalled carbon nanotubes (MWNTs) inside, were produced by dc arc discharge evaporation with a computer-controlled feeder of a pure-carbon electrode without a metal catalyst in a He–H2 gas mixture. The purification of MWNTs was carried out to remove amorphous carbon and carbon nanoparticles. High-resolution transmission electron microscopy observations and Raman scattering studies show that the MWNTs possess a high crystallinity and a mean outermost diameter of ∼ ∼10 nm. It has been confirmed that the current density in the electron field emission from a purified MWNT mat can reach 77.92 mA/cm2, indicating that the purified MWNTs are a promising candidate electron source in a super high-luminance light-source tube or a miniature X-ray source.  相似文献   

17.
The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples were composed of MoO2 nanowires formed over a thin layer of crystalline Mo4O11. TEM observation revealed that these nanowires have some nanoscale protrusion on their surface. These nanoprotrusions resulted in enhancement of field-emission properties of nanowires comprising nanoprotrusions. The turn-on emission field and the enhancement factor of this type of nanostructures were measured 0.2 V/μm and 42991 at the vacuum gap of 300 μm, respectively. These excellent emission properties are attributed to the special structure of the nanowires that have potential for utilizing in vacuum nanoelectronic and microelectronic applications.  相似文献   

18.
Novel lotiform ZnO nanostructures were synthesized on silicon substrate via simple thermal evaporation. The average diameter of the ZnO nanostructures is ∼1.5 μm. The lotiform-like ZnO structures were formed by nanorods arrays with the average diameter of 70 nm. The as-grown lotiform ZnO nanostructures have excellent field-emission properties such as the low turn-on field of 3.4 V/μm, and very high emission current density of 12.4 mA/cm2 at the field of 9.6 V/μm. These features make the lotiform-like ZnO nanostructures competitive candidates for field-emission-based displays. PACS 61.46.-w; 61.82.Rx; 78.67.-n; 73.63.Bd; 74.78.Na  相似文献   

19.
The direct growth of a tetrapod-like ZnO nanostructure has been accomplished by using a thermal oxidation method without any catalysts. Studies on the field emission properties of the ordered ZnO nanotetrapods films found that the shape of the ZnO nanotetrapods has considerable effect on their field emission properties, especially the turn-on field and the emission current density. Compared with the rod-like legs ZnO nanotetrapods, the nanotetrapods with acicular legs have a lower turn-on field of 2.7 V/μm at a current density of 10 μA/cm2, a high field enhancement factor of 1830, and an available stability. More importantly, the emission current density reached 1 mA/cm2 at a field of 4.8 V/μm without showing saturation. The results could be valuable for using the ZnO nanostructure as a cold-cathode field-emission material.   相似文献   

20.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号