首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Densities at T = (293.15, 298.15, 303.15, 313.15, 323.15, and 333.15) K and sound velocities at T = 298.15 K of tetraphenylphosphonium bromide, sodium tetraphenylborate, sodium bromide, and sodium perchlorate in dimethylsulfoxide have been measured over the composition range from (0 to 0.3) mol · kg−1. From these data, apparent molar volumes and apparent molar isentropic compressibilities at infinite dilution as well as the expansibilities have been evaluated. The results have been discussed in terms of employing tetraphenylphosphonium tetraphenylborate as a reference electrolyte in splitting the limiting apparent molar volumes and apparent molar isentropic compressibilities into ionic contributions.  相似文献   

2.
The density and speed of sound of L-arginine (0.025–0.2 mol kg?1) in aqueous + D-maltose (0–6 mass% of maltose in water) were obtained at temperatures of (298.15, 303.15 and 308.15) K. The apparent molar volume, limiting apparent molar volume, transfer volume, as well as apparent molar compressibility, limiting apparent molar compressibility, transfer compressibility, pair and triple interaction coefficients, partial molar expansibilities, coefficient of thermal expansion and also the hydration number, were calculated using the experimental density and speed of sound values. The results have been discussed in terms of solute–solute and solute–solvent interactions in these systems. Solute–solvent (hydrophilic–ionic group and hydrophilic–hydrophilic group) interactions were found to be dominating over solute–solute (hydrophobic–hydrophilic group) interactions in the solution, which increases with increase in maltose concentration.  相似文献   

3.
The apparent molar volume (?V), viscosity B-coefficient and molar refraction (RM) have been determined of L-valine in aqueous solution of LiCl, NaCl and KCl at 298 K, 303 K and 308 K from density (ρ), viscosity (η) and refractive index (nD) measurements, respectively. The limiting apparent molar volumes (?V0) and experimental slopes (SV*) derived from the Masson equation have been interpreted in terms of solute–solvent and solute–solute interactions, respectively. The viscosity data were analysed using the Jones–Dole equation and the derived parameter B has also been interpreted in terms of solute–solvent interactions in the solutions. Molar refraction (RM) has been calculated using the Lorentz–Lorenz equation.  相似文献   

4.
Density and sound speed measurements have been carried out for the ternary systems consisting of tetra-n-butyl ammonium bromide (TBAB) in 0.1 m aqueous magnesium sulphate heptahydrate (MgSO4.7H2O)-water over the full range of composition from T = 293.15 to 318.15 K by using volumetric method. Using this experimental data, various physical and thermodynamical parameters such as adiabatic compressibility, apparent molal compressibility, apparent molal volume, apparent and limiting partial molar volumes of the electrolytes and ions in these mixtures have been evaluated and split into respective ionic contributions. The results have been discussed in terms of ion–ion and ion–solvent interactions occurring between TBAB and aqueous MgSO4 solutions. Further, structure making/breaking behaviour of MgSO4 has been reported in terms of sign of the partial molar expansibility at infinite dilution.  相似文献   

5.
The speed of sound and density of 2-hydroxy-5-methyl acetophenone in dimethylformamide have been measured over the range of temperatures 25–40 °C. From the experimentally determined data, values of apparent molar volume (V ϕ), adiabatic compressibility (βs), apparent molar adiabatic compressibility (K s,ϕ) and their limiting values have been computed. Values at infinite dilution provide information regarding solute–solvent interaction. The density and velocity increases with increase in concentration and decreases with increase in temperature. These results have been analyzed in terms of molecular interactions between acetophenone and dimethylformamide.  相似文献   

6.
Ethambutol (EMB) is a bacteriostatic antimycobacterial drug prescribed to treat tuberculosis. It is bacteriostatic against actively growing TB bacilli. The density and viscosity of aqueous ethambutol hydrochloride solutions have been studied at 298.15, 301.15 and 304.15 K and at different concentrations (0.255, 0.168, 0.128, 0.087, 0.041, and 0.023 mol dm−3). The apparent molar volume of these solutions for different temperatures and concentrations was calculated from the density data. The relative viscosities of drug solutions have been analysed by Jones-Dole equation. The limiting apparent molar volumes have been evaluated for different temperatures. The different properties have been used to study structural properties, structure formation and breaking properties of drug and solute-solvent interactions in solutions.  相似文献   

7.
The densities and speeds of sound for binary mixtures containing the solute ionic liquid (IL) methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]), solute/solvent methanol, and solvent methyl acetate have been measured at 298.15, 303.15, 308.15 and 313.15 K at atmospheric pressure. The binary mixtures studied are ([MOA]+[Tf2N] + methyl acetate or methanol), and (methanol + methyl acetate). The apparent molar volume, V φ and the apparent molar isentropic compressibility, k φ , have been evaluated from the experimental density and speed of sound data, respectively. The parameters of a Redlich–Mayer type equation were fitted to the apparent molar volume and apparent molar isentropic compressibility data. The apparent molar volume and apparent molar isentropic compressibility at infinite dilution, Vf0V_{\phi}^{0} and kf0k_{\phi}^{0}, respectively, of the binary solutions have also been calculated at each temperature. The infinite dilution apparent molar volume indicates that intermolecular interactions for (IL + methyl acetate) mixtures are stronger than for (IL + methanol) mixtures at all temperatures except at 298.15 K, and that Vf0V_{\phi}^{0} for the (IL + methyl acetate or methanol) binary systems increases with an increase in temperature. For the (methanol + methyl acetate) system the intermolecular interaction are weaker and Vf0V_{\phi}^{0} also increases with an increase in temperature. Values of the infinite dilution apparent molar expansibility, Ef0E_{\phi}^{0}, indicate that the interaction between (IL + methyl acetate) is greater than for (IL + methanol) and (methanol + methyl acetate).  相似文献   

8.
New experimental data for the density, speed of sound, and refractive index of aqueous solutions of diglycine + NaCl and triglycine + NaCl have been reported. The apparent molar volume and apparent molar isentropic compressibility of these peptides at various NaCl concentrations have been calculated from the measured properties. The results show that both peptides exhibit a positive volume transfer to solutions with higher NaCl concentrations and a negative apparent isentropic compressibility in the presence of NaCl. These effects indicate that the apparent volumes of the peptide molecules are larger in solutions with higher NaCl concentrations and that the water molecules around the peptide molecules are less compressible than the water molecules in the bulk solvent. These effects are attributed to the doubly charged nature of the peptides and the interactions between the charged groups and hydrocarbon backbone of peptides with the ions.  相似文献   

9.
 The apparent molar volume (φv) and viscosity (η) of L(+)-arabinose, D(+)-galactose, D(−)-fructose, D(+)-glucose, sucrose, lactose, and maltose in water and in 0.1% and 0.3% water-Surf Excel solutions were measured as a function of solute concentrations at 308.15, 313.15, and 323.15 K, respectively. The apparent molar volume (φv) of the carbohydrates was found to be a linear function of the concentration. From a φv versus molality (b) plot, the apparent molar volume at infinite dilution (), which is practically equal to the partial molar volume at infinite dilutions () of these substances was determined. The viscosity coefficients B and D for the carbohydrates were calculated on the basis of the viscosity of the solutions and the solvent using the Jones-Dole equation. The activation free energy for viscous flow (ΔG ) of the solutions was also calculated using the Eyring equation. The carbohydrates showed structure making behaviour both in water and in water-Surf Excel solutions. When water-Surf Excel solutions and pure water solutions containing carbohydrate molecules are compared, the former were found to be more structured. The behaviour of these solutes in water and in water-Surf Excel solution systems is discussed in the light of solute–solvent interactions.  相似文献   

10.
The densities and viscosities of several sulfates, viz., ammonium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, zinc sulfate and cadmium sulfate in aqueous binary mixtures of formamide (FA) have been determined at 298.15, 308.15, and 318.15 K and at atmospheric pressure. The ultrasonic speeds of the electrolytic solutions have also been measured at 298.15 K. Apparent molar volumes (ϕ V ), viscosity B-coefficients and adiabatic compressibilities (K S) of these electrolytic solutions were calculated from the experimental densitiy, viscosity and acoustic data. The density and viscosity data were evaluated by using Masson’s and Jones-Dole equation respectively; the derived parameters have been analyzed in terms of ion-ion and ion-solvent interactions. The structure making/breaking capacities of the electrolytes have been inferred from the sign of (∂2ϕ V 0/∂T 2) P . The results showed that all the electrolytes act as structure-makers in these media. Also the compressibility data indicated electrostriction of the solvent molecules around the cations. The activation parameters of viscous flow were also determined and discussed by the application of transition state theory.  相似文献   

11.
The densities of aqueous solutions of tetramethylammonium, tetraethylammonium, tetra-n-propylammonium and tetra-n-butylammonium hydroxide have been measured at 25°C in the concentration range 0.1–1.0 mol-kg-1 . The apparent and partial molar volumes are calculated from the density measurements. The apparent molar volumes of the solutes show considerable deviation from the Debye-Hülckel limiting law, even at high dilution. The relation for the concentration dependence of the apparent molar volume is given in an analytical form. The limiting apparent molar volumes of the solutes are split into their ionic components by an extrathermodynamic approach and are discussed in terms of ion-solvent interactions. In this way, the limiting partial molar ionic volume for the hydroxide ion is found to be 2 cm3-mol-1.  相似文献   

12.
Densities, ρ, and speeds of sound, u, for glycine, l-alanine and l-valine have been measured in (0.2, 0.4, 0.6 and 0.8) mol · kg?1 aqueous solutions of potassium dihydrogen phosphate at temperatures T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. Values of the apparent molar volumes, limiting apparent molar volumes, and transfer volumes have been calculated from the density data. The experimental speeds of sound were used to estimate apparent molar adiabatic compressibilities. The variation of these parameters with temperature is discussed in terms of the role of amino acid and salt in solute–solvent interactions. The UV–visible spectrum has also been used to analyze the results.  相似文献   

13.
ALI  A. SABIR  S. SHAHJAHAN HYDER  S. 《中国化学》2006,24(11):1547-1553
Density, viscosity, and refractive index, for glycine, DL-alanine, L-serine and DL-valine have been determined in aqueous solution of 0.05 mol/kg caffeine as a function of amino acid (AA) concentration at 25, 30, 35, and 40 ℃ The density data have been used to compute apparent molar volume. The partial molar volume (limiting apparent molar volume) was obtained by applying the Masson's equation. The viscosity data have been analyzed by means of Jones-Dole equation. The values of Falkenhagen coefficient and Jones-Dole coefficient thus obtained are used to interpret the solute-solute and solute-solvent interactions, respectively. Hydration number was also computed. The transition-state theory was applied to obtain the activation parameters of viscous flow, i.e., free energy of activation per mole of solvent, and solute. The enthalpy and entropy of activation of viscous flow were computed for the system. Refractive index was used to calculate molar refractivity of the mixtures. The results have been interpreted in the light of various interactions occurring between the components of the mixtures under applied experimental conditions.  相似文献   

14.
Summary.  The apparent molar volume (φv) and viscosity (η) of L(+)-arabinose, D(+)-galactose, D(−)-fructose, D(+)-glucose, sucrose, lactose, and maltose in water and in 0.1% and 0.3% water-Surf Excel solutions were measured as a function of solute concentrations at 308.15, 313.15, and 323.15 K, respectively. The apparent molar volume (φv) of the carbohydrates was found to be a linear function of the concentration. From a φv versus molality (b) plot, the apparent molar volume at infinite dilution (), which is practically equal to the partial molar volume at infinite dilutions () of these substances was determined. The viscosity coefficients B and D for the carbohydrates were calculated on the basis of the viscosity of the solutions and the solvent using the Jones-Dole equation. The activation free energy for viscous flow (ΔG ) of the solutions was also calculated using the Eyring equation. The carbohydrates showed structure making behaviour both in water and in water-Surf Excel solutions. When water-Surf Excel solutions and pure water solutions containing carbohydrate molecules are compared, the former were found to be more structured. The behaviour of these solutes in water and in water-Surf Excel solution systems is discussed in the light of solute–solvent interactions. Corresponding author. E-mail: chemistry_ru@yahoo.com Received March 19, 2002; accepted (revised) July 31, 2002 Published online February 24, 2003  相似文献   

15.
Density and speed of sound measurements have been made on the systems containing the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and some organic solvents having a wide range of dielectric constants. Similar studies have been carried out for tetrabutylammonium hexafluorophosphate ([TBA][PF6]), which has common anion ([PF6]) with the studied ionic liquid. For the systems investigated, the apparent molar volumes and apparent molar isentropic compressibilities were determined and fitted to the Redlich–Mayer and the Pitzer equations from which the corresponding limiting values were obtained. These limiting values were used to obtain some information about ion–solvent interactions. Furthermore, using the ionic limiting apparent volume values for [TBA]+ from the literature and limiting apparent molar volume for the ionic liquid and [TBA][PF6] obtained in this work, the ionic limiting apparent molar volume values for the cation [BMIM]+ in different organic solvents were also estimated.  相似文献   

16.
Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with cyclohexane, n-hexane, heptane and octane have been measured over the entire range of composition at (303.15, 308.15 and 313.15) K and at atmospheric pressure. From these experimental values, excess molar volume (V E), deviation in viscosity (Δη) and deviation in isentropic compressibility (ΔK s) have been calculated. The viscosities of binary mixtures were calculated theoretically from the pure component data by using various empirical and semi-empirical relations and the results compared with the experimental findings.  相似文献   

17.
The mean apparent molar volume of cyclohexylsulfamic acid has been determined from the density data of aqueous solutions up to a molality of 0.540 mol⋅kg−1 and at 293.15, 298.15, 303.15, 313.15, and 323.15 K. The mean apparent molar volume of the acid was divided into contributing ionic and molecular apparent molar volumes. The limiting apparent molar volume of the molecular acid amounts to (131.69± 0.02) cm3⋅mol−1 and the limiting apparent molar expansibility to (0.130± 0.003) cm3⋅mol−1⋅K−1 at 298.15 K. From the limiting ionic and molecular apparent molar volumes the limiting volume change of ionization of cyclohexylsulfamic acid was calculated. A value of −7.76 cm3⋅mol−1 was evaluated at 298.15 K. The temperature dependence of the volume change of ionization amounts to −(0.018± 0.009) cm3⋅mol−1⋅K−1. From the density data the coefficient of thermal expansion of the investigated solutions was calculated and from this the mean apparent molar expansibility of cyclohexylsulfamic acid was derived.  相似文献   

18.
Volumetric, viscometric and ultrasonic studies of uracil in an aqueous urea solution in varying concentration of 2, 3 and 5?M have been carried out at 298, 308 and 318?K. The uracil concentration in the aqueous urea solution varies from 0.05% to 0.4%. Density (ρ), viscosity (η) and sound speed (u) have been measured. The experimental data are used for computing various thermodynamic and acoustic parameters, namely apparent molar volume, isentropic compressibility, apparent isentropic compressibility, relative association, intermolecular free length, acoustic impedance, viscous relaxation time, hydration number, Gibb's free energy, classical absorption coefficient of the solution and viscosity data have been further analysed in the light of Masson's equation and Jones–Dole's equations, respectively. The results have been discussed in terms of solute–solute and solute–solvent interaction and the structural changes of the solutes in solutions. The effect of variation of temperature on these interactions has also been investigated.  相似文献   

19.
Densities, ρ, speed of sound, u for glycine, l-alanine have been measured in aqueous solutions of dipotassium hydrogen phosphate (DKHP) ranging from 0.2, 0.4, 0.6 and 0.8 mol·kg−1 at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, partial molar expansibility have been derived from density data. Experimental speeds of sound data were used to estimate apparent molar adiabatic compressibility, limiting apparent molar adiabatic compressibility, transfer parameter and hydration number. These parameters have been discussed in the light of ion-ion and ion-solvent interactions.  相似文献   

20.
Densities and speeds of sound of the cyclopentane with 2-propanol, 1-butanol and 2-butanol are measured over the whole composition range at different temperatures in the range 288.15–308.15 K and atmospheric pressure using Anton Paar DSA 5000 densimeter. The experimental densities and speeds of sound have been used to calculate excess molar volumes, excess molar isentropic compressibilities and excess intermolecular free length. The partial molar volumes and apparent molar volumes at infinite dilution have also been calculated. The mixing quantities like (∂V mE/∂T)P and (∂H mE/∂P)T have been calculated at T = 298.15 K and these values are compared with the values calculated from Flory’s theory at equimolar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号