首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the role of viscoelasticity on the dynamics of rising gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump discontinuity. There is much debate in the literature over the cause of the jump discontinuity, which is observed once the bubble exceeds a certain critical volume. In this paper, the employment of some choice modelling assumptions allows insights into the mechanisms of the jump discontinuity which cannot be ascertained experimentally. The ambient fluid is assumed incompressible and the flow irrotational, with viscoelastic effects included through the stress balance on the bubble surface. The governing equations are solved using the boundary element method. Some Newtonian predictions are discussed before investigating the role of viscoelasticity. The model predicts the trademark cusp at the trailing end of a rising bubble to a high resolution. However, the irrotational assumption precludes the prediction of the negative wake. The corresponding absence of the jump discontinuity supports the hypothesis that the negative wake is primarily responsible for the jump discontinuity, as mooted in previous studies.  相似文献   

2.
A particular case of constitutive relations in the Pobedrya nonlinear theory of viscoelasticity is considered. It is shown that these relations can be used in the problem of describing the material softening under pulsed loading.  相似文献   

3.
The glass fibre drawing process is simulated using a finite-element method. The two-dimensional energy and momentum equations are solved in their fully non-linear forms. These are coupled via the temperature-sensitive viscosity function. Both convective and radiative cooling mechanisms are taken into account on the filament surface. An effective emissivity of about 0.2 is found to be applicable to the drawing conditions in this paper. Even at this fairly low effective emissivity, radiation is found to be the dominant mode of cooling. The material thermal conductivity is found to have a small but definite influence on the filament profiles. Two-dimensionsl effects of the kinematic field are only significant up to a distance of about two orifice radii from the nozzle exit.The symbols in the square brackets show the dimensions of the parameters;M Mass,L Length,T Temperature,t Time. a Constant radius of a uniform cylinder [L] - A Local cross-sectional area of the filament [L 2 ] - b i Total tension applied on the filament boundary surface in thei th direction [ML/t 2 ] - c Specific heat [L 2 /t 2 T] - D Local filament diameter [L] - f i i th component of the body-force vector [L/t 2 ] - h Surface convective heat transfer coefficient of the filament [M/t 3 T] - H Total equivalent heat transfer coefficient due to both convection and radiation [M/t 3 T] - k Thermal conductivity [ML/t 3 T] - M Mass-flow rate [M/t] - n Coordinate normal to the local filament surface [L] - Nu Local Nusselt number [–] - Average Nusselt number [–] - Q Rate of heat transfer [ML 2 /t 3 ] - Volume-flow rate [ 3 /t] - r Radial coordinate [L] - R Local radius of the filament [L] - Re x Reynolds number based on characteristic length scalex [–] - s Coordinate along the filament surface [L] - T Temperature [T] - u Radial component of the velocity [T/t] - U Free-stream velocity of a uniform flow [L/t] - v Local speed of a fluid particle defined by v = ;[L/t] - V Volume [L 3 ] - v f Constant velocity of a filament with a uniform radius [L/t] - w Axial component of the velocity [L/t] - Average axial velocity of the fluid inside the tube [L/t] - z Axial coordinate, i.e. axial distance from the orifice exit [L] - Exponential coefficient of the viscosity function [T –1 ] - ij Kronecker delta [–] - Emissivity or total hemispherical emissivity [–] - µ Viscosity [M/Lt] - µ 0 Reference viscosity defined byµ = µ 0 e –T [M/Lt] - Fluid density [M/L 3 ] - Stefan-Boltzmann constant [M/t 3 T 4 ] - Viscous dissipation function [M/Lt 3 ] - a Of air - a Based on the (constant) filament radius - C.L. Referred to the centre line of the filament - conv Referred to convection - D Dased on the diameter - f Referred to the filament local condition - g Referred to glass - i,j Species in multi-component systems - o Quantity evaluated at the orifice exit - R Based on the radius - rad Referred to radiation - s Evaluated at the filament surface - tot Referred to the total heat transfer from the filament surface - w Evaluated at the tube wall - Ambient condition - * Refers to non-dimensional quantities - — Indicating quantities averaged over the filament cross-section  相似文献   

4.
The effects of blood viscoelasticity on the pulse wave in arteries   总被引:1,自引:1,他引:0  
IntroductionThatthebloodhasviscoelasticpropertiesisawell_knownfact.TheresearchesforthebloodviscoelasticitybyG .B .Thurston[1~4]andS .Chien[5 ]showthatthebloodnotonlyappearstheviscoelasticityinvariousoscillatorybloodflows,butalsohasquitestrongelasticityinsome…  相似文献   

5.
A kinematically admissible velocity field which is different from Avitzur’s is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integral as a function of the upper limit in this paper.  相似文献   

6.
7.
8.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 141–145, July–August, 1990.  相似文献   

9.
The sharkskin surface instability is commonly observed in the extrusion of polymer melts. We present a series of experiments in which a specifically designed rectangular slit die with insulated and independently heated sides and is used to induce precise temperature gradients across a flowing polyethylene melt. Our previous experiments demonstrated that the character of the surface distortions produced by the sharkskin instability was a function of the die wall temperature and therefore the extrudate had viscoelastic properties at the surface. In this paper, we explore the role of temperature and viscoelastic property gradients near the capillary wall. The amplitude of the sharkskin instability is quantified and plotted against apparent shear and extension rates. Analysis of the data demonstrates that the amplitude and frequency of the instability is independent of bulk temperature and temperature gradient and is dependent only on wall temperature. The data are normalized using a dimensionless Weissenberg number based on the extension rate to collapse the data collected over all temperatures and gradients onto a single master curve. We conclude with an example of a rectangular extrudate exhibiting varying surface roughness due to differential die heating and discuss the implications of our observations on the sharkskin surface instability mechanism and on commercial applications.  相似文献   

10.
An experimental study for polymer sintering has been carried out using pairs of powder particles. Although in many cases Newtonian sintering models successfully describe polymer sintering, they predict a faster coalescence rate than that observed with the polypropylene copolymer resins used in this study, indicating that factors other than the surface tension and the viscosity play a role in polymer sintering. Observations of coalescence under the microscope and rotational molding experiments suggest that melt elasticity slows down the process. Based on these findings, a mathematical model describing the complete polymer sintering process for viscoelastic fluids has been developed. The approach was similar to that of Frenkel (1945) and the convected Maxwell constitutive equations were used together with the quasi-steady state approximation. The proposed viscoelastic sintering model is capable of predicting the sintering rate slowdown observed in this study. Received: 18 August 1997 Accepted: 30 March 1998  相似文献   

11.
As we know from experimental testing, the stiffness behaviour of carbon black-filled elastomers under dynamic deformations is weakly dependent on the frequency of deformation but strongly dependent on the amplitude. Increasing strain amplitudes lead to a decrease in the dynamic stiffness, which is known as the Payne effect. In this essay, we develop a constitutive approach of finite viscoelasticity to represent the Payne effect in the context of continuum mechanics. The starting point for the constitutive model resulting from this development is the theory of finite linear viscoelasticity for incompressible materials, where the free energy is assumed to be a linear functional of the relative Piola strain tensor. Motivated by the weak frequency dependence of the dynamic stiffness of reinforced rubber, the memory kernel of the free energy functional is of the Mittag Leffler type. We demonstrate that the model is compatible with the Second Law of Thermodynamics and equal to a fractional differential equation between the overstress of the Second Piola Kirchhoff type and the Piola strain tensor. In order to represent the dependence of the dynamic stiffness on the amplitude of strain, we replace the physical time by an intrinsic time variable. The temporal evolution of the intrinsic time is driven by an internal variable, which is a measure for the current state of the material's microstructure. The material constants of the model are estimated using a stochastic identification algorithm of the Monte Carlo type. We demonstrate that the constitutive approach pursued here represents the combined frequency and amplitude dependence of filler-reinforced rubber. In comparison with the micromechanical Kraus model developed for sinusoidal strains, the theory set out in this essay allows the representation of the stress response under arbitrary loading histories.  相似文献   

12.
We examine the effects of matrix phase viscoelasticity on the rheological modeling of polymer blends with a droplet morphology. Two contravariant, second-rank tensor variables are adopted along with the translational momentum density of the fluid to account for viscoelasticity of the matrix phase and the ellipsoidal droplet shapes. The first microstructural variable is a conformation tensor describing the average extension and orientation of the molecules in the matrix phase. The other microstructural variable is a configuration tensor to account for the average shape and orientation of constant-volume droplets. A Hamiltonian framework of non-equilibrium thermodynamics is then adopted to derive a set of continuum equations for the system variables. This set of equations accounts for local conformational changes of the matrix molecules due to droplet deformation and vice versa. The model is intended for dilute blends of both oblate and prolate droplets, and droplet breakup and coalescence are not taken into account. Only the matrix phase is considered as viscoelastic; i.e., the droplets are assumed to be Newtonian. The model equations are solved for various types of homogeneous deformations, and microstructure/rheology relationships are discussed for transient and steady-state conditions. A comparison with other constrained-volume rheological models and experimental data is made as well.  相似文献   

13.
14.
Sharkskin instabilities and the effect of slip from gas-assisted extrusion   总被引:4,自引:0,他引:4  
This paper is concerned with a polymer extrusion instability and the effect of introducing slip by means of a thin lubricating gas layer between the extrusion die wall and the flowing polymer melt. Gas-assisted extrusion (GAE) experiments were carried out using high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) for a number of different gas injection die geometries. The stress distributions within the polymer melt were monitored during extrusion using flow birefringence. Polyflow numerical simulations were used to calculate the local stress concentrations in the melt at the die exit, as these were believed to be related to the occurrence of sharkskin. Simulations were also used to observe the effect of a full slip boundary condition as imparted by GAE. A key finding of the paper is that GAE in the parallel section of the die wall simply moved the local exit stress concentration upstream to the point of gas injection, and therefore did not reduce sharkskin. Simulations indicated that for correctly designed dies, the local surface stress concentration would be reduced. However, it was found experimentally that it was not possible to obtain a stable gas layer for this die design with upstream gas injection. A numerical investigation, involving simulations of varying levels of partial slip along the die wall, indicated an optimum level of slip where the stress concentrations were reduced. It is speculated that this is the reason that coatings such as PTFE, which impart a partial slip, can reduce sharkskin while GAE does not. The findings show that a controlled level of partial slip lowers the overall stress concentrations.  相似文献   

15.
We report unsteady experimental results on the stability of fibre diameter in a continuous glass forming process, using two unique laser systems: a high resolution diffractometer and a backward phase Doppler interferometer. For draw ratios close to those used in the industry, the glass fibre diameter exhibits small fluctuations, which cannot be considered to be a result of draw resonance. It is shown that the amplitude of fibre diameter fluctuations decreases with increasing draw ratio, while the corresponding frequency increases with the temperature of the molten glass. Although the origin of these fluctuations is still not well understood, it appears that their frequency depends on the characteristics of the molten glass jet.  相似文献   

16.
17.
The evolution of linear viscoelasticity during the vulcanization of polyethylene is studied through the gel point. The material in the vicinity of the gel point is described by two scaling laws: one characterizes the viscoelasticity at the critical point and a second characterizes the evolution of viscoelasticity near the gel point. Time Resolved Mechanical Spectroscopy is used to observe both scaling phenomena. The material at the gel point displays power law relaxation over five decades of time with a power-law relaxation exponent equal to 0.32. This study conforms with previous findings that this exponent is composition-dependent. The longest relaxation time diverges in the vicinity of the gel point as max |p c - p| –1/, and we find = 0.2. This result conforms with previous reports that this exponent may be independent of composition. The Arrhenius flow activation energy for this material undergoes three-fold changes during crosslinking up to the gel point. A single-adjustable-parameter stretched-exponential-power law relaxation function is an inadequate representation of crosslinked materials over any significant range of extent of the reaction up to the gel point.  相似文献   

18.
19.
The polypropylene melt viscosity dependence upon temperature, shear and molecular weight, and the molecular weight dependence upon temperature and time were measured and mathematically described. For the dependence of the melt viscosity upon temperature, shear and molecular weight (melt index), a master curve has been found. The influence of the progressive degradation of polypropylene during the extrusion upon the temperature, pressure and dissipated energy down-channel profiles is given.  相似文献   

20.
The effect of radial diffusion on the performance of a liquid-liquid displacement process is considered in fluid flow between porous parallel plates and through a porous tube, as examples of a two-zone problem in unsteady-state mass transfer. The double Laplace transformation is applied to the system equations. In obtaining the inversion of the Laplace transformed equations the first inversion (with respect to the transformed dimensionless axial distance) is performed by use of the residue method, and then the second inversion (with respect to the transformed dimensionless time) is performed by use of the numerical Laplace transform technique advanced by Bellman et al. A numerical example is shown and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号