首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ASTUDYOFTHEELASTO-PLASTICAXIALLYTENSILEPROPERTIESOFMETALMATRIXCOMPOSITESWITHFIBER-ENDDEBONDINGSuXiaofeng(苏晓风)ChenHaoran(陈浩然)(...  相似文献   

2.
考虑损伤界面的多相复合材料总体平均力学性能的预测   总被引:2,自引:0,他引:2  
在广义自洽有限元迭代法 ̄[1]的基础上研究了损伤界面对多相复合材料的总体平均横向力学性能的影响。给出了对于不同体分比和损伤界面性质的典型复合材料的数值结果。数值分析表明损伤界面的厚度及其损伤程度对复合材料总体平均横向平面应变体积模量和剪切模量有显著影响。本文还计算了损伤界面区域的局部应力场。  相似文献   

3.
IntroductionWiththedevelopmentofinformationindustryandtheapearanceofsmartmaterialsandsmartstructures,itbecomesmoreandmoreimpo...  相似文献   

4.
In order to predict the effective properties of multiferroic composite materials, the effective material constants of multiferroic composites with the coated inclusion and imperfect interface are investigated. Based on the generalized self-consistent theory, the closed-form solutions of the effective material constants are derived. For the composites with piezomagnetic inclusion, piezoelectric coating and polymer matrix, numerical calculations are performed to present the influences of the imperfect interface cooperating with the coating on the effective material constants. From the results, it can be observed that the effective constants can be enhanced by the coating but reduced by the imperfect interface. Moreover, the coating has the shielding effects on the imperfect interface for the composite structures with its higher filling ratio.  相似文献   

5.
This paper deals with the problems of circular-arc crack between bonded dissimilar materials under antiplane concentrated forces. By applying the analytic continuation technique and the analyzing method of the Singularity in complex functions, we obtain universal solutions for the problems. For several typical cases the closed form solutions are obtained and the stress intensity factors are devived From these solutions, we provide a series of particular results, some of which coincide with those in Ref.(7).  相似文献   

6.
广义自洽Mori-Tanaka模型及涂层夹杂体复合材料的有效模量   总被引:4,自引:0,他引:4  
经典广义自洽模型的最大不足是需要确定相材料的位移及应变场,这一过程十分繁杂,而且最后得到的有效剪切模量无法显式表达,难以应用.该文摈弃这一经典做法,而从广义自洽模型的应变等价条件出发,在夹杂应变均匀的近似假定下,将Hill界面条件应用于整个二相体内,从而得到一种可以预报涂层夹杂体复合材料有效模量的广义自洽Mori-Tanaka模型.与已有的实验及理论结果的比较表明,该模型准确可靠,而且有效体积和剪切模量均能显式表达.同时证实,以上的Hill界面条件应用于二相体内相当于Mori-Tanaka平均场近似.  相似文献   

7.
The present paper studies the dynamic effective property of piezoelectric composites embedded with cylindrical piezoelectric fibers under anti-plane harmonic electro-elastic waves. By using the dynamic generalized self-consistent method (DGSM) of electro-elastic coupling wave, the problem of randomly distributed cylindrical fibers in a piezoelectric medium can be analyzed in terms of a representative volume element with a coated fiber embedded in an equivalent effective medium. The interfaces between the fibers and the matrix are assumed to be imperfect which are here modeled as spring- or membrane-type interfaces. Through wave function expansion method and an iterative method, the effective piezoelectrically stiffened shear modulus and the effective wave number are obtained. Examples are conducted to verify the present solutions and to illustrate the dependence of the effective piezoelectrically stiffened shear modulus on the wave number (frequency) as well as the interface properties. The special size effect related to interfacial imperfection is also discussed.  相似文献   

8.
The dynamic stress and electric displacement intensity factors of impermeable cracks in homogeneous piezoelectric materials and interface cracks in piezoelectric bimaterials are evaluated by extending the scaled boundary finite element method (SBFEM). In this method, a piezoelectric plate is divided into polygons. Each polygon is treated as a scaled boundary finite element subdomain. Only the boundaries of the subdomains need to be discretized with line elements. The dynamic properties of a subdomain are represented by the high order stiffness and mass matrices obtained from a continued fraction solution, which is able to represent the high frequency response with only 3–4 terms per wavelength. The semi-analytical solutions model singular stress and electric displacement fields in the vicinity of crack tips accurately and efficiently. The dynamic stress and electric displacement intensity factors are evaluated directly from the scaled boundary finite element solutions. No asymptotic solution, local mesh refinement or other special treatments around a crack tip are required. Numerical examples are presented to verify the proposed technique with the analytical solutions and the results from the literature. The present results highlight the accuracy, simplicity and efficiency of the proposed technique.  相似文献   

9.
A modified shear lag analysis, taking into account the notion of stress perturbation function, is employed to evaluate the effect of transverse cracks on the stiffness reduction in [±θn/90m]S angle-ply laminated composites. Effects of number of 90° layers and number of ±θ layers on the laminate stiffness have also been studied. The present results represent well the dependence of the degradation of mechanical properties on the fibre orientation angle of the outer layers, the number of cracked cross-ply layers and the number of uncracked outer ±θ layers in the laminate.  相似文献   

10.
In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution of cracks and the interaction between cracks. Numerical results for the periodic microstructure of different dimensions are presented. From the results obtained, it can be found that the distribution of cracks has a significant effect on the effective elastic moduli of the material. The project supported by the National Education Committee for Doctor  相似文献   

11.
A modified shear-lag analysis, taking into account the concept of stress perturbation function, is developed and applied to evaluate the effect of transverse cracks on the effective thermal expansion coefficient of aged angle-ply composites laminates. Effects of number of 90° layers and number of θ° layers in the outer angle-ply laminates on the reduction of the effective axial coefficient of thermal expansion have also been studied. The results of this paper represent well the dependence of the reduction of the effective axial coefficient of thermal expansion on the hygrothermal conditions, the fibre orientation angle of the outer layers, the number of cracked cross-ply layers and the number of un-cracked outer θ° layers in laminate.  相似文献   

12.
We review the theoretical bounds on the effective properties of linear elastic inhomogeneous solids (including composite materials) in the presence of constituents having non-positive-definite elastic moduli (so-called negative-stiffness phases). Using arguments of Hill and Koiter, we show that for statically stable bodies the classical displacement-based variational principles for Dirichlet and Neumann boundary problems hold but that the dual variational principle for traction boundary problems does not apply. We illustrate our findings by the example of a coated spherical inclusion whose stability conditions are obtained from the variational principles. We further show that the classical Voigt upper bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites applies and that it imposes a stability condition: overall stability requires that the effective moduli do not surpass the Voigt upper bound. This particularly implies that, while the geometric constraints among constituents in a composite can stabilize negative-stiffness phases, the stabilization is insufficient to allow for extreme overall static elastic moduli (exceeding those of the constituents). Stronger bounds on the effective elastic moduli of isotropic composites can be obtained from the Hashin–Shtrikman variational inequalities, which are also shown to hold in the presence of negative stiffness.  相似文献   

13.
The obvious shortcoming of the generalized self-consistent method (GSCM) is that the effective shear modulus of composite materials estimated by the method can not be expressed in an explicit form. This is inconvenient in engineering applications. In order to overcome that shortcoming of GSCM, a reformation of GSCM is made and a new micromechanical scheme is suggested in this paper. By means of this new scheme, both the effective bulk and shear moduli of an inclusion-matrix composite material can be obtained and be expressed in simple explicit forms. A comparison with the existing models and the rigorous Hashin-Shtrikman bounds demonstrates that the present scheme is accurate. By a two-step homogenization technique from the present new scheme, the effective moduli of the composite materials with coated spherical inclusions are obtained and can also be expressed in an explicit form. The comparison with the existing theoretical and experimental results shows that the present solutions are satisfactory. Moreover, a quantitative comparison of GSCM and the Mori-Tanaka method (MTM) is made based on a unified scheme. The project supported by the National Natural Science Foundation of China under the Contract NO. 19632030 and 19572008, and China Postdoctoral Science Foundation  相似文献   

14.
This work aims at estimating the size-dependent effective elastic moduli of particulate composites in which both the interfacial displacement and traction discontinuities occur. To this end, the interfacial discontinuity relations derived from the replacement of a thin uniform interphase layer between two dissimilar materials by an imperfect interface are reformulated so as to considerably simplify the characteristic expressions of a general elastic imperfect model which is adopted in the present work and include the widely used Gurtin–Murdoch and spring-layer interface models as particular cases. The elastic fields in an infinite body made of a matrix containing an imperfectly bonded spherical particle and subjected to arbitrary remote uniform strain boundary conditions are then provided in an exact, coordinate-free and compact way. With the aid of these results, the elastic properties of a perfectly bonded spherical particle energetically equivalent to an imperfectly bonded one in an infinite matrix are determined. The estimates for the effective bulk and shear moduli of isotropic particulate composites are finally obtained by using the generalized self-consistent scheme and discussed through numerical examples.  相似文献   

15.
界面对多相介质平均弹性性能和应力场的影响   总被引:1,自引:0,他引:1  
在建立多相介质夹杂问题的自治模型基础上,应用自治有限元法研究了多相介质的平均弹性性能问题,通过数例讨论了在不同体分比下,界面对多相介质总体平均弹性性能的影响,结果表明,界面厚度对多相介质横向平均剪切模量和横向平均体积模量有明显的影响,而对纵向平均拉伸模量影响不大。为了进一步研究界面破坏特征,本文还分析了多相介质界面区域的应力场。  相似文献   

16.
In the present work, applying the asymptotic homogenization method (AHM), the derivation of the antiplane effective properties for three-phase magneto-electro-elastic fiber unidirectional reinforced composite with parallelogram cell symmetry is reported. Closed analytical expressions for the antiplane local problems on the periodic cell and the corresponding effective coefficients are provided. Matrix and inclusions materials belong to symmetry class 6mm. Numerical results are reported and compared with the eigenfunction expansion-variational method (EEVM) and other theoretical models. Good agreements are found for these comparisons. In addition, with the herein implemented solution, it is possible to reproduce the effective properties of the reduced cases such as piezoelectric or elastic composites obtaining good agreements with previous reports.  相似文献   

17.
In this paper, the stress-intensity factors for two collinear cracks in a composite bonded by an isotropic and an anisotropic half-plane were calculated. The cracks are paralell to the interface, and the crack surfaces are loaded by uniform shear stresses. By using Fourier transform, the mixed boundary value problem is reduced to a set of singular integral equations. For solving the integral equations, the crack surface displacements are expanded in triangular series and the unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors for the cracks in the boron-fibre plastics and aluminium joined composite and in carbon-fibre reinforced plastics were calculated numerically.  相似文献   

18.
Hill condition and overall properties of composites   总被引:2,自引:0,他引:2  
Summary We discuss the Hill principle's role and applications in modern micromechanics of industrial composite materials. Uniform boundary conditions, fundamental in micromechanics, are introduced as a class of Hill solutions. Mixed uniform conditions, basic for experimental testing, are analysed. Domains of application of the Hill principle are reviewed, like homogeneization of heterogeneous media, definition of effective properties and size effect in heterogeneous materials. Generalization of the Hill condition is realized for arbitrary materials, in particular for nonlinear inelastic composites with imperfect interfaces. Received 9 September 1997; accepted for publication 23 December 1997  相似文献   

19.
Two-phase fiber-reinforced magneto-electro-elastic composites are considered. The constituents exhibit transverse isotropy and the composite is assumed to have global monoclinic symmetry. The Milgrom–Shtrikman compatibility conditions are applied to obtain explicitly exact relations for the eighteen anti-plane effective coefficients. Such relations are written in terms of nine equalities of fourth-order determinants. These fourth-order determinants exhibit the regularity of a third-order minor formed by the response matrix of the matrix material and are completed by a row and/or column of the response matrices of the fibers material and the composite, respectively. Other two less explored alternative theories, namely, a second type of the Milgrom–Shtrikman conditions, which involve only effective coefficients, and Milgrom's version of the original Milgrom–Shtrikman conditions, are followed in order to derive twenty and forty exact relations, respectively. Particular and limit cases are recovered from the obtained relations.  相似文献   

20.
We are considering, in this study, to quantify the difference between two morphologies: heterogeneous materials with overlapping identical spherical inclusions and heterogeneous materials with identical hard one. Coupling with numerical simulations, the statistical analysis of microstructures morphology was used to evaluate the representativeness of results. The methodology, developed in Kanit et al. (2003), is used to determine exactly the integral range (IR), variance and covariance of each microstructure type. The obtained results show that the integral range of microstructures with hard spheres, is simply, the volume of one inclusion in the deterministic representative volume element, and for microstructures with overlapping spheres, is 8 times the integral range in the case of hard spheres. The obtained results suggest us to define a new concept what we propose to name the Equivalent Morphology Concept (EMC). The relationships between parameters of two microstructures are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号