首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An improvement of current method of selective hydride generation based on pre-reduction for differentiation of tri- and pentavalent arsenicals is described, applied for the oxidation state specific speciation analysis of inorganic, mono-, di- and trimethylated arsenicals with minimum sample pretreatment using atomic absorption spectrometry with the multiatomizer. The preconcentration and separation of arsine, methylarsine, dimethylarsine and trimethylarsine are then carried out by means of cryotrapping. The presented study shows that 2% (m/v) L-cysteine hydrochloride monohydrate (L-cys) currently used for off-line pre-reduction of pentavalent arsenicals can be substituted with 1% (m/v) thioglycolic acid (TGA). Much faster pre-reduction of pentavalent arsenicals at 25 °C with equal sensitivities as in the case of L-cys has been achieved with TGA. A setup for on-line pre-reduction by TGA has been optimized, with the application of segmented flow analysis for suppression of axial dispersion in the pre-reduction coil. Standard calibrations measured with or without on-line pre-reduction indicate uniform and equal sensitivities for all As forms. The possibility of standardization by water standards of single species (e.g. iAs(III)) for quantification of all other As forms in urine is demonstrated in the recovery study. Limits of detection were 100 ng l− 1 for iAs(III), 135 ng l− 1 for iAs(V) and 30 to 50 ng l− 1 for methylated arsenicals.  相似文献   

2.
Anion-exchange HPLC has been combined with hydride generation - atomic absorption spectrometry (HG-AAS) for the routine speciation of arsenite, arsenate, monomethylarsenic acid and dimethylarsinic acid. The sensitivity of the AAS-detection was increased by a post-column reaction system to achieve complete formation of volatile arsines from the methylated species and arsenate. The system allows the quantitative determination of 0.5 microg/l of each arsenic compound in water samples. The stability of synthetical and natural water containing arsenic at trace levels was investigated. To preserve stored water samples, a method for quantitative separation of arsenate at high pH-values with the basic anion-exchange resin Dowex 1x8 was developed.  相似文献   

3.
Hydride generation (HG) coupled with AAS, ICP–AES, and AFS techniques for the speciation analysis of As, Sb, Se, and Te in environmental water samples is reviewed. Careful control of experimental conditions, offline/online sample pretreatment methods employing batch, continuous and flow-injection techniques, and cryogenic trapping of hydrides enable the determination of various species of hydride-forming elements without the use of chromatographic separation. Other non-chromatographic approaches include solvent extraction, ion exchange, and selective retention by microorganisms. Sample pretreatment, pH dependency of HG, and control of NaBH4/HCl concentration facilitate the determination of As(III), As(V), monomethylarsonate (MMA), and dimethylarsinate (DMA) species. Inorganic species of arsenic are dominant in terrestrial waters, whereas inorganic and methylated species are reported in seawater. Selenium and tellurium speciation analysis is based on the hydrides generation only from the tetravalent state. Se(IV) and Se(VI) are the inorganic selenium species mostly reported in environmental samples, whereas speciation of tellurium is rarely reported. Antimony speciation analysis is based on the slow kinetics of hydride formation from the pentavalent state and is mainly reported in seawater samples.  相似文献   

4.
Anion-exchange HPLC has been combined with hydride generation – atomic absorption spectrometry (HG-AAS) for the routine speciation of arsenite, arsenate, monomethylarsenic acid and dimethylarsinic acid. The sensitivity of the AAS-detection was increased by a post-column reaction system to achieve complete formation of volatile arsines from the methylated species and arsenate. The system allows the quantitative determination of 0.5 g/l of each arsenic compound in water samples. The stability of synthetical and natural water containing arsenic at trace levels was investigated. To preserve stored water samples, a method for quantitative separation of arsenate at high pH-values with the basic anion-exchange resin Dowex 1×8 was developed.  相似文献   

5.
对海水中甲基、丁基锡的氢化反应与捕集、色谱分离及其原子化等进行了条件实验和最佳化。采用15cmChromosorbGAW—DMCS载体和OV—3固定液,色谱分离锡的无机、一甲、二甲、三甲、一丁、二丁、三丁基化合物的保留时间分别为40、100、125、139、160、191、228s;在0.200dm3水样中直接测定海水中各形态锡的检出限分别为1.9、1.6、1.8、3.0、1.3、1.4、22.4、ngSn·dm-3;其相应的测量精密度在10%左右。  相似文献   

6.
An on-line flow injection-hydride generation/atomic absorption spectrometry method was developed for the preconcentration and selective determination of inorganic arsenic [As(III) and As(V)] and its methylated species. The separation of the arsenic species was performed by an automated pH-selective arsines generation technique, using sodium tetrahydroborate(III) as reductant. Each arsine was cryogenically trapped in a PTFE coil, knotted and sealed inside another wider diameter tube, through which liquid nitrogen was suctioned by negative pressure. Then, based on their different boiling points, the arsine species were selectively liberated by using a heating cycle of microwave radiation, followed by atomic absorption detection. A sample solution aliquot mixed with 1% citric acid was used for the determination of As(III) alone, while a second sample aliquot mixed with 2 mol l(-1) nitric acid was used for the quantitative determination of total inorganic arsenic, monomethylarsonic acid and dimethylarsinic acid. Based on 10 ml sample, the detection limits lie within the range 20-60 ng As l(-1), which are sufficiently low to detect the arsines-forming species in natural waters. These values are negatively affected by the reagents purity and background noise due to flame flickering, but the sensitivity can substantially be improved by increasing sample size or running several consecutive reactions.  相似文献   

7.
Shraim A  Chiswell B  Olszowy H 《The Analyst》2000,125(5):949-953
Simple and inexpensive methods for the speciation of arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in environmental water samples were developed. In these methods a hydride generation-atomic absorption spectrometry (HG-AAS) technique was employed and perchloric acid (as a reaction medium), L-cysteine (as a pre-reducing agent for a certain contact time between its addition and analysis) and sodium tetrahydroborate(III) (NaBH4, as a reducing agent) were used. The use of L-cysteine greatly enhances the absorption signals of all four arsenic species at low acid concentration (0.001-0.04 M). The methods developed for the determination of total arsenic and total inorganic arsenic and speciation of the four arsenic species in environmental water samples are as follows. (i) DMA: 0.005 M acid and 0.04% NaBH4 in the absence of L-cysteine. DMA can also be speciated in the presence of L-cysteine as follows: 2 M acid, 2.5% L-cysteine after a contact time of approximately 5 min and 0.6% NaBH4. (ii) As(III): 5 M acid and 0.08% NaBH4 in the absence of L-cysteine. (iii) Total inorganic arsenic (As(III) + As(V)]: 8 M acid and 0.6% NaBH4 in the absence of L-cysteine. (iv) Total arsenic: 0.01 M acid, 5% L-cysteine after a contact time of 5 min and 2% NaBH4. (v) MMA: 8 M acid, 3% L-cysteine after a contact time of 50 min and 0.6% NaBH4. (vi) As(V): by difference. Detection limits and recoveries of added spikes for all analyses were found to be 0.5-1.7 ppb and 90-112% respectively.  相似文献   

8.
Reports in the literature that the compounds MeSb(O)(OH)2 and Me2Sb(O)(OH) are present in marine and fresh-waters need to be re-examined. The results of several synthetic strategies suggest that these methylantimony(V) compounds are either environmentally inaccessible or polymeric in nature. Pure samples of various di- and tri- methylated antimony(V) species were prepared and found to undergo molecular rearrangement reactions when subjected to hydride generation procedures typically used for aquatic speciation.  相似文献   

9.
Ingested arsenic is known to be not only excreted by urine, but to be stored in sulphydryl-rich tissue like hair, nail or skin. We developed an extraction method for arsenic species from these tissues and studied the stability of different arsenic species during the extraction process. Inorganic and pentavalent methylated arsenic was found to be stable under the extraction conditions, whereas trivalent methylated arsenicals and the thio-analogue of DMAV (DMAS) showed reduced stability. The absorption ability of hair for these different species was studied as well. Inorganic arsenic is better absorbed by hair than monomethyl- or dimethyl-arsenicals, whereby the trivalent forms are taken up better than the pentavalent forms. Independent of which methylated arsenical was used for the incubation, the pentavalent form was always the dominant form after extraction. Hair and nail samples from humans suffering from chronic arsenic intoxication contained dominantly inorganic arsenic with small and strongly varying amounts of DMAV and MAV present. DMAS was only found in some nail sample extracts containing unusually high amounts of DMAV and is believed to be formed during the extraction process.  相似文献   

10.
Biomedical research on arsenic can be divided into three steps, i.e., speciation of the entirety of arsenic in a biological system (metallome), examination of the metabolism of arsenic based on the speciation of metallome (metabolomics), and examination of the metallomics underlying the mechanism that triggers biological/physiological/toxicological effects based on the metabolomics. In the present communication, the metabolic pathway for inorganic arsenic, a known human carcinogen, was explained based on current results of speciation. In addition to the consecutive reduction and oxidative methylation reactions converting inorganic arsenicals to the major urinary metabolite dimethylarsinic acid, the role of the conjugation reaction involving glutathione resulting in excretion from the liver was discussed. Furthermore, sulfur-containing arsenicals (thioarsenicals) identified as new metabolites in the livers of rats were characterized chemically and metabolically.  相似文献   

11.
A selective detection method for organotin compounds by elimination of the inorganic tin matrix has been worked out using a coupling of the hydride generation technique (HG) with transversely heated graphite atomizer-atomic absorption spectrometry (THGA-AAS). The suppression of the inorganic tin matrix bases on the utilization of kinetic interferences during the hydride generation step avoiding expensive chromatographic separation techniques. For the different organotins this method delivers detection limits in the range 0.9–1.2 μg/L using a 500 μL sample loop. In comparison with the fully automated determination system this modification represents an efficient screening-method for the determination of organotin in environmental samples allowing fast and inexpensive monitoring.  相似文献   

12.
Arsenic (+3 oxidation state) methyltransferase (As3mt) plays a central role in the enzymatically catalyzed conversion of inorganic arsenic into methylated metabolites. Most studies of the metabolism and disposition of arsenicals following exposure to inorganic arsenic focus on the formation and fate of methylated oxyarsenicals. However, recent research has shown methylated thioarsenicals to be another important class of metabolites of inorganic arsenic. Here, we report on the presence of methylated oxy- and thioarsenicals in urine and liver from wild-type mice that efficiently methylate inorganic arsenic and from As3mt knockout mice that lack arsenic methyltransferase activity. Following a single oral dose of 0.5 mg of arsenic as arsenate/kg body weight, urine from wild-type mice contained methylated oxyarsenicals and unknown arsenicals. Further analysis identified one unknown arsenical in urine of wild-type mice as dimethylmonothioarsinic acid. In addition, another unknown arsenical in urine of wild-type mice that occurred in the urine of about 20 % of arsenate-treated mice. The presence of low levels of methylated arsenicals in liver digests of As3mt knockout mice may reflect the activity of other methyltransferases or the absorption of methylated arsenicals formed by the microbiota of the gastrointestinal tract. The lack of methylated thioarsenicals in urine of As3mt knockout mice suggests a close link between the processes that form methylated oxy- and thioarsenicals.  相似文献   

13.
Five arsenic-resistant freshwater algae which had been isolated from an arsenic-polluted environment were studied for the biotransformation of arsenic compounds accumulated by them from the aqueous phase. The algal cells bioaccumulating arsenic were digested by 2 mol dm?3 NaOH at 95°C, the As? C bonds except for As? CH3 were cleaved by the treatment and the methylated arsenic compounds were reduced to the corresponding arsines by sodium borohydride (hydride generation). The arsines were chromatographically separated on the basis of their boiling-point difference and determined by atomic absorption spectrophotometry. Methylated arsenic compounds were found in all algal cells. The predominant arsenic species in the cells, however, were non-methylated arsenic compounds which were mainly present in the residue of a chloroform–methanol extract. The non-methylated arsenic compounds were found to be not present in the free inorganic arsenic substrate and to be bound strongly with proteins or polysaccharides in the cells. Methylated arsenic compounds were found mainly in the lipid-soluble fractions and the major form was a dimethylarsenic compound. Trimethyl- and monomethyl-arsenic compounds were detected but at very low level. The dimethylarsinic acid was not present in the free form in the lipid-soluble fraction and should be bound with a lipid molecule. It was also found that the accumulation of arsenic by Nostoc occurred only in living cells.  相似文献   

14.
A flow-injection system for the determination of inorganic arsenic [As(III)/As(V)] and selenium species [Se(IV)/ Se(VI)] by electrochemical hydride generation, cryogenic trapping and atomic absorption spectrometry is described. A simple and robust electrochemical flow-through cell with fibrous carbon as cathodic material has been developed for the speciation of arsenic. A cold-trap system makes possible to eliminate interferences from methylated arsenic species. Without pre-reduction the system is selective to As(III) and Se(IV). The selectivity obtained with fibrous carbon as cathode material is compared to the selectivity obtained with a second electrochemical flow-through cell using a lead foil as cathode.  相似文献   

15.
A simple continuous flow method is proposed to eliminate copper interference in arsenic speciation by hydride generation, based on the selective retention of this interfering ion in an iminodiacetate chelating resin previous to the hydride generation process. The arsines generated were cold trapped and measured by ICP/OES. The proposed method allows about 98% of the copper present in the samples to be removed. Minor co-retention of As(V) was observed as a result of electrostatic interaction between the arsenate anion and the nitrogen of the iminodiacetate group of the chelating resin Muromac A-1, the charge distribution of which is modified when copper is chelated. The species As(III), MMA and DMA were not retained in the microcolumn, probably because these species are mainly in the molecular form at the working pH value (4.5). In synthetic samples containing 50 g l–1 of each arsenic species together with 100 mg l–1 copper, the recoveries obtained were: As(V) 97.6%, As(III) 100%, MMA 99.8%, and DMA 99.9%. The method was applied to arsenic speciation in river water samples containing high levels of copper.  相似文献   

16.
The paper presents the principles and advantages of a technique combining high performance liquid chromatography and hydride generation atomic absorption spectrometry (HPLC-HGAAS) applied to speciation analysis of inorganic species of arsenic As(III) and As(V) in ground water samples. With separation of the arsenic species on an ion-exchange column in the chromatographic system and their detection by the hydride generation atomic absorption spectrometry, the separation of the analytical signals of the arsenic species was excellent at the limits of determination of 1.5 ng/ml As(III) and 2.2 ng/ml As(V) and RSD of 4.3% and 7.8% for the concentration of 25 ng/ml. The hyphenated technique has been applied for determination of arsenic in polluted ground water in the course of the study on migration of micropollutants. For total arsenic concentration two independent methods: HGICP-OES and HGAAS were used for comparison of results of real samples analysis.  相似文献   

17.
Arsenic present at 1 microg L(-1) concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and nonhydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

18.
Inorganic arsenic, monomethylarsenic and dimethylarsenic species have been observed in samples of sediment porewater collected from the Tamar Estuary in South-West England. Porewater samples were collected using in situ dialysis. The arsenic species were separated by hydride generation and concentrated by liquid nitrogen trapping, prior to analysis by directly coupled gas chromatography-atomic absorption spectroscopy. The predominant dissolved arsenic species present was inorganic arsenic (5-62 m?g dm?3). However, this is the first time significant concentrations of methylated arsenic species have been quantified in estuarine porewaters (0.04–0.70 m?g dm?3), accounting for between 1 and 4% of the total dissolved arsenic. The presence of methylated arsenic compounds in porewaters is attributed to in situ environmental methylation, although the possibility of methylated arsenic species being derived from biological debris cannot be excluded.  相似文献   

19.
An accurate, precise, sensitive and automated non-chromatographic method for methylmercury speciation based on a selective continuous liquid-liquid extraction of methylmercury, into xylene, as bromide and cold mercury vapour generation directly from the organic phase and final ICP-AES mercury detection is proposed. Both separation steps, liquid-liquid and gas-liquid are accomplished in a continuous mode and on line with ICP-AES as detector. The detection limit attained for methylmercury was 4ng·ml–1 (as mercury). The precision of the determination at a concentration level around 20 times the detection limit was +-5%. The proposed methodology has been applied successfully to the speciation of methylmercury and inorganic mercury in spiked sea water and spiked urine samples.  相似文献   

20.
Flow analysis has played a major role in many areas of chemical analysis, making operations more robust and precise. It facilitates experimental studies opening new areas of research. In the field of arsenic research, there are various examples of surveys concerning arsenic determination and its species with the use of flow injection analysis (FIA) and sequential injection analysis (SIA). The increasing concern over the human exposure to arsenic and its species has necessitated the development of rapid, highly sensitive, precise, and accurate analytical methods for its determination in trace levels in environmental and biological samples. This review provides a literature survey on the automatic on-line hydride generation methodologies coupled to atomic spectrometry for determination of inorganic and organic arsenic species, during the last decades. All advances in on-line manifolds are categorized and highlighted. There are several reports of manifolds and setup instrumentation concerning hydride generation including continuous flow analysis (CFA), FIA, SIA, lab-on-valve (LOV), multicommutation flow systems, and hyphenated techniques. On-line preconcentration and pretreatment methodologies coupled with hydride generation such as solid phase extraction, co-precipitation and trapping are also discussed, as they are of particular interest in the development of fully automated methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号