首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schrödinger's picture of quantum dynamics. Here it is shown in both cases how to map the algebra of commutators, defining the time evolution in terms of a non-Hermitian Hamiltonian, onto a non-Hamiltonian algebra with a Hermitian Hamiltonian. The logic behind such a derivation is reversible, so that any Hermitian Hamiltonian can be used in the formulation of non-Hermitian dynamics through a suitable algebra of generalized (non-Hamiltonian) commutators.
These results provide a general structure (a template) for non-Hermitian equations of motion to be used in the computer simulation of open quantum systems dynamics.  相似文献   

2.
We find that laser process can be equivalently described by a symplectic evolution in the context of thermo field dynamics, and the corresponding coherent state evolution for the corresponding master equation is recognized. More interestingly, this embodies a new application of non-Hermitian Hamiltonian operator which can well expose the entanglement between the system and its environment.  相似文献   

3.
We provide a reviewlike introduction to the quantum mechanical formalism related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting with the time-independent framework, we explain how to determine an appropriate domain of a non-Hermitian Hamiltonian and pay particular attention to the role played by PJ symmetry and pseudo-Hermiticity. We discuss the time evolution of such systems having in particular the question in mind of how to couple consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate the general formalism with three explicit examples: (i) the generalized Swanson Hamiltonians, which constitute non-Hermitian extensions of anharmonic oscillators, (ii) the spiked harmonic oscillator, which exhibits explicit super-symmetry, and (iii) the ?x 4-potential, which serves as a toy model for the quantum field theoretical ?4-theory.  相似文献   

4.
We investigate the entanglement dynamics in a non-Hermitian one-axis twisting Hamiltonian. Especially, we focus on the dependence of quantum entanglement on the non-Hermitian term. Its shown that the non-Hermitian term play an important role in the process of generating quantum entanglement and the more entanglement can be achieved by enhancing the non-Hermitian term.  相似文献   

5.
Two non-Hermitian PT-symmetric Hamiltonian systems are reconsidered by means of the algebraic method which was originally proposed for the pseudo-Hermitian Hamiltonian systems rather than for the PT-symmetric ones.Compared with the way converting a non-Hermitian Hamiltonian to its Hermitian counterpart,this method has the merit that keeps the Hilbert space of the non-Hermitian PT-symmetric Hamiltonian unchanged.In order to give the positive definite inner product for the PT-symmetric systems,a new operator V,instead of C,can be introduced.The operator V has the similar function to the operator C adopted normally in the PT-symmetric quantum mechanics,however,it can be constructed,as an advantage,directly in terms of Hamiltonians.The spectra of the two non-Hermitian PT-symmetric systems are obtained,which coincide with that given in literature,and in particular,the Hilbert spaces associated with positive definite inner products are worked out.  相似文献   

6.
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.  相似文献   

7.
Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry (PT symmetry). One might expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed. The procedure is general and works for any PT-symmetric Hamiltonian. Observables exhibit CPT symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalization of it.  相似文献   

8.
李金晴  罗云荣  海文华 《物理学报》2017,66(23):233701-233701
用包含偶极和四极虚势能项的非厄米哈密顿算符来描述Paul阱中囚禁阻尼单离子在静电场下的量子运动.通过导出和分析系统的精确解,得到在PT对称和不对称情形下的不同实能谱与稳定量子态,以及PT不对称情形的虚能谱和衰减量子态,同时给出相应于不同态的参数区域和存活概率.结果发现该非厄米系统外场参数能惟一确定量子稳定态并导致波函数形态变化,据此提出非相干操控相应量子跃迁的方法.让量子态衰减导致的离子位置期待值的衰减与经典阻尼谐振子的衰减一致,得到虚势能参数与经典阻尼参数的对应关系.所得结果将进一步丰富具有广泛应用背景的囚禁离子动力学.  相似文献   

9.
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory.  相似文献   

10.
The quantum mechanics with a stationary non-Hermitian Hamiltonian and a complex evolution parameter, as well as its classical limit with nontrivial correlations have been studied. The corresponding dynamics is shown to be irreversible for the isothermal and adiabatic regimes of quantum and classical evolution. The possibility of a universal relationship between irreversibility and dynamical parity violation in the system has been established. The mechanism of gravity generation by the distribution of correlations in a free theory is demonstrated.  相似文献   

11.
We investigate an entangled three-qubit system in which only one of the qubits experiences the decoherence effect by considering a non-Hermitian Hamiltonian,while the other two qubits are isolated,i.e.,do not interact with environment,directly.Then,the time evolution of the density matrix(for the pure as well as mixed initial density matrix)and the corresponding reduced density matrices are obtained,by which we are able to utilize the dissipative non-Hermitian Hamiltonian model with Markovian and non-Markovian regimes via adjusting the strange of the non-Hermitian term of the total Hamiltonian of the under-considered system.  相似文献   

12.
A non-Hermitian operator with a real spectrum and a complete set of eigenvectors may serve as the Hamiltonian operator for a unitary quantum system provided that one makes an appropriate choice for the defining the inner product of physical Hilbert state. We study the consequences of such a choice for the representation of states in terms of projection operators and the geometry of the state space. This allows for a careful treatment of the quantum Brachistochrone problem and shows that it is indeed impossible to achieve faster unitary evolutions using PT-symmetric or other non-Hermitian Hamiltonians than those given by Hermitian Hamiltonians.  相似文献   

13.
We investigate quantum dynamics of a quantum walker on a finite bipartite non-Hermitian lattice,in which the particle can leak out with certain rate whenever it visits one of the two sublattices.Quantum walker initially located on one of the non-leaky sites will finally totally disappear after a length of evolution time and the distribution of decay probability on each unit cell is obtained.In one regime,the resultant distribution shows an expected decreasing behavior as the distance from the initial site increases.However,in the other regime,we find that the resultant distribution of local decay probability is very counterintuitive,in which a relatively high population of decay probability appears on the edge unit cell which is the farthest from the starting point of the quantum walker.We then analyze the energy spectrum of the non-Hermitian lattice with pure loss,and find that the intriguing behavior of the resultant decay probability distribution is intimately related to the existence and specific property of the edge states,which are topologically protected and can be well predicted by the non-Bloch winding number.The exotic dynamics may be observed experimentally with arrays of coupled resonator optical waveguides.  相似文献   

14.
杨锦涛  曹俊鹏  杨文力 《中国物理 B》2022,31(1):10314-010314
We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.  相似文献   

15.
In this paper, we have provided a matrix Hamiltonian model for honeycomb lattices and subsequently obtained the dispersion relation. Furthermore, we have constructed the C operator for the given non-Hermitian Hamiltonian model. The quadratic surfaces are sketched and the quantum Brachistochrone problem is discussed for the given honeycomb lattice model.  相似文献   

16.
By starting from the stochastic Hamiltonian of the three correlated spins and modeling their frequency fluctuations as caused by dephasing noisy environments described by Ornstein-Uhlenbeck (OU) processes, we study the dynamics of quantum correlations, including entanglement and quantum discord. Of course, in this article, we use two definitions for the quantum discord (global quantum discord and quantum dissension). We prepared initially our open system with the Greenberger-Horne-Zeilinger (GHZ) and W states and present the exact solutions for evolution dynamics of entanglement and quantum discord between three spins under both Markovian and non-Markovian regime of this classical noise. By comparison the dynamics of entanglement with that of quantum discord we find that entanglement can be more robust than quantum discord against this noise. It is shown that by considering non-Markovian extensions the survival time of correlations prolong. Also, we compare the results of two definitions of the quantum discord and show that the quantum dissension is equal to the global quantum discord for GHZ state, but they are unequal for the W state.  相似文献   

17.
In this paper, we evaluate the quantum and classical correlations in exact dynamics of qubit systems interacting with a common dephasing environment. We show the existence of a sharp transition between the classical and quantum loss of correlations during the time evolution. We show that it is possible to exploit a large class of initial states in different tasks of quantum information and processing without any perturbation of the correlations from the environment noisy for large time intervals. On the other hand, we include the dynamics of a new kind of correlation so-called quantum dissonance, which contains the rest of the nonclassical correlations. We show that the quantum dissonance can be considered as an indicator to expect the behavior of the dynamics of classical and quantum correlations in composite open quantum systems.  相似文献   

18.
We investigated the quantum speed limit time of a non-Hermitian two-level system for which gain and loss of energy or amplitude are present. Our results show that, with respect to two distinguishable states of the non-Hermitian system, the evolutionary time does not have a nonzero lower bound. The quantum evolution of the system can be effectively accelerated by adjusting the non-Hermitian parameter, as well as the quantum speed limit time can be arbitrarily small even be zero.  相似文献   

19.
We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.  相似文献   

20.
Hamiltonian light-front dynamics of quantum fields may provide a useful approach to systematic nonperturbative approximations to quantum field theories. We investigate inequivalent Hilbert-space representations of the light-front field algebra in which the stability group of the light front is implemented by unitary transformations. The Hilbert space representation of states is generated by the operator algebra from the vacuum state. There is a large class of vacuum states besides the Fock vacuum which meet all the invariance requirements. The light-front Hamiltonian must annihilate the vacuum and have a positive spectrum. We exhibit relations of the Hamiltonian to the nontrivial vacuum structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号