首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Titanate nanofibers of various sizes and layered structure were prepared from inorganic titanium compounds by hydrothermal reactions. These fibers are different from "refractory" mineral substances because of their dimension, morphology, and significant large ratio of surface to volume, and, surprisingly, they are highly reactive. We found, for the first time, that phase transitions from the titanate nanostructures to TiO(2) polymorphs take place readily in simple wet-chemical processes at temperatures close to ambient temperature. In acidic aqueous dispersions, the fibers transform to anatase and rutile nanoparticles, respectively, but via different mechanisms. The titanate fibers prepared at lower hydrothermal temperatures transform to TiO(2) polymorphs at correspondingly lower temperatures because they are thinner, possess a larger surface area and more defects, and possess a less rigid crystal structure, resulting in lower stability. The transformations are reversible: in this case, the obtained TiO(2) nanocrystals reacted with concentrate NaOH solution, yielding hollow titanate nanotubes. Consequently, there are reversible transformation pathways for transitions between the titanates and the titanium dioxide polymorphs, via wet-chemical reactions at moderate temperatures. The significance of these findings arises because such transitions can be engineered to produce numerous delicate nanostructures under moderate conditions. To demonstrate the commercial application potential of these processes, we also report titanate and TiO(2) nanostructures synthesized directly from rutile minerals and industrial-grade rutiles by a new scheme of hydrometallurgical reactions.  相似文献   

2.
A size- and shape-dependent morphological transformation was demonstrated during the hydrothermal soft chemical transformation, in neutral solution, of titanate nanostructures into their anatase titania counterparts. Specifically, lepidocrocite hydrogen titanate nanotubes with diameters of approximately 10 nm were transformed into anatase nanoparticles with an average size of 12 nm. Lepidocrocite hydrogen titanate nanowires with relatively small diameters (average diameter range of < or = 200 nm) were converted into single-crystalline anatase nanowires with relatively smooth surfaces. Larger diameter (>200 nm) titanate wires were transformed into analogous anatase submicron wire motifs, resembling clusters of adjoining anatase nanocrystals with perfectly parallel, oriented fringes. Our results indicate that as-synthesized TiO2 nanostructures possessed higher photocatalytic activity than the commercial titania precursors from whence they were derived.  相似文献   

3.
Anatase-type TiO2 single nanocrystals with boatlike, comblike, sheetlike, leaflike, quadrate, rhombic, and wirelike particle morphologies were prepared by hydrothermal treatment of a layered titanate nanosheet colloidal solution. The formation reactions and surface properties of the TiO2 nanocrystals were investigated using XRD, TEM, TG-DTA analyses, and measurements of BET specific surface area, photocatalytic activity, and ruthenium dye (N719) adsorption. The crystal morphology can be controlled by reaction temperature, pH value of reaction solution, and exfoliating agent. The titanate nanosheets were transformed to the TiO2 nanocrystals by two types of reactions. One is an in situ topotactic structural transformation reaction, and the other is a dissolution-deposition reaction on the surface. The anatase nanocrystals formed by the in situ topotactic structural transformation reaction retain the sheetlike particle morphology of the precursor, and they preferentially expose the (010) plane of anatase structure. The crystal surface of anatase nanocrystals prepared in this study showed higher photocatalytic activity and higher ruthenium dye adsorption capacity than did the Ishihara ST-01 sample, a standard anatase nanocrystal sample. The results indicated the (010) plane of the anatase structure has high photocatalytic activity and high ruthenium dye adsorption ability.  相似文献   

4.
The hydrothermal crystallization of barium titanate, BaTiO3, has been studied in situ by time-resolved powder neutron diffraction methods using the recently developed Oxford/ISIS hydrothermal cell. This technique has allowed the formation of the ferroelectric ceramic to be followed in a noninvasive manner in real time and under genuine reaction conditions. In a first set of experiments, Ba(OD)2-8D2O was reacted with two different titanium sources, either crystalline TiO2 (anatase) or amorphous TiO2-H2O in D2O, at 100-140 degrees C and the reaction studied using the POLARIS time-of-flight neutron powder diffractometer, at the ISIS Facility. In a second series of experiments, the reaction between barium chloride and crystalline TiO2 (anatase) in NaOD/D2O was studied at temperatures between 100 and 200 degrees C and at different deuterioxide concentrations using the constant-wavelength D20 neutron powder diffractometer at the Institut Laue Langevin. Quantitative growth and decay curves were determined from analysis of the integrated intensities of Bragg reflections of starting materials and product phases. In both sets of experiments the rapid dissolution of the barium source was observed, followed by dissolution of the titanium source before the onset of crystallization of barium titanate. Using a nucleation-growth model we are able to simulate the growth curve of barium titanate at three temperatures. Our results indicate the predominance of a homogeneous dissolution-precipitation mechanism for the hydrothermal formation of barium titanate, rather than other possible mechanisms that have been discussed in the literature. Analysis of the line widths of the Bragg reflections in the neutron diffraction data indicates that the particle size of the BaTiO3 product phase prepared from the amorphous TiO2-H2O is smaller than that prepared from crystalline TiO2 (anatase).  相似文献   

5.
Through structure-monitoring of nanotube formation from a lamellar sodium titanate, the present work explicitly elucidated the structure of the titanate nanotubes obtained from hydrothermal treatment of TiO(2) with NaOH. A new compound of an orthorhombic lepidocrocite-type sodium titanate was synthesized from calcination of a solid-state mixture of TiO(2) anatase and Na(2)CO(3) powders followed by hydrothermal treatment with NaOH. By treating with acid at 25 degrees C for Na(+) exchange with H(3)O(+), the titanate compound exfoliated and then proceeded with sheet-scrolling to form nanotubes, which had a structure and morphology very close to those of the nanotubes derived from NaOH treatment on TiO(2). During the low-temperature acid treatment, the lepidocrocite-type titanate is transformed from the orthorhombic C-base-centered symmetry to the body-centered symmetry. This transformation, accompanied by a size-contraction of TiO(6)-octahedron units, was critical for the formation of nanotubes. The present work provides direct evidence, for the first time, that the widely reported TiO(2)-derived titanate nanotubes can be obtained at low temperatures by scrolling the sheets exfoliated from the orthorhombic lepidocrocite-type titanate.  相似文献   

6.
Nano-sized anatase TiO(2) with exposed {001} facets was synthesized from lamellar protonated titanate precursor. Owing to small size (ca. 11 nm) and high surface area (155 m(2) g(-1)), the crystals with 26.1% {001} facets exhibited markedly superior photoactivity to reference ca. 76 nm anatase TiO(2) nanosheets with 88.4% {001} facets.  相似文献   

7.
由钛酸盐纳米带水热制备锐钛矿型TiO2纳米带   总被引:1,自引:0,他引:1  
研究了水热处理具有层状结构的钛酸钠纳米带或钛酸纳米带转化为锐钛矿型TiO2的制备过程、难易程度和相转化机理. 实验结果表明, 当水热反应温度和时间分别在160 ℃ 和24 h以内, 钛酸钠纳米带很难完全转化为锐钛矿型TiO2, 若升高反应温度并延长反应时间, 则可制得纯的锐钛矿型TiO2, 但纳米带形貌被严重破坏; 当水热反应温度和时间分别为160 ℃ 和16 h时, 1次酸洗的钛酸纳米带能够完全转化为锐钛矿型TiO2, 若钛酸纳米带经过3次强酸浸泡, 则在160 ℃下相转化时间就会缩短到12 h, 所有钛酸纳米带在转化为TiO2后的形貌仍为纳米带, 但经3次酸浸后生成的TiO2纳米带表面更光滑. 讨论了钛酸钠纳米带或钛酸纳米带转化为锐钛矿型TiO2的相转化机理.  相似文献   

8.
Titanate nanofibers were synthesized by hydrothermal method (150 °C for 72 h) using natural rutile sand as the starting materials. TiO2 (B) and anatase TiO2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 °C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO2 from low cost material.  相似文献   

9.
钛酸盐纳米管的制备及光电性能研究   总被引:4,自引:1,他引:4  
采用水热法制备了钛酸盐纳米管, 并用TEM、XRD、XPS对其进行了表征. 纳米管管径在5~30 nm之间, 管长约为0.1~1 μm, 具有不同于锐钛矿型的钛酸盐结构, 分子组成可能是Na4-xHxTi2O5. 将钛酸盐纳米管制备成纳米管结构电极, 并进行了光电化学研究. 钛酸盐纳米管产生阳极光电流, 具有n型半导体特性.  相似文献   

10.
A hierarchical titanate nanotube based filtration membrane was fabricated and successfully applied for bacteria removal. A facile and effective membrane fabrication method was developed to directly grow a hierarchical titanate nanotube selective layer onto a porous metal membrane substrate. The method is a one-pot synthesis method, eliminates the needs for tedious and costly multiple-coating approach. The resultant membrane possesses a unique porous structure with strong mechanical strength, intrinsically free of cracks and pinholes, and can be readily regenerated by a simple pressure driven back-flushing process. Successful separation of E. coli demonstrates the applicability of the titanate nanotube membrane for waterborne pathogens removal, which would be of a great interest to the water purification applications, especially for the purified recycling water applications. The high selectivity and flux of the nanotube membrane in addition to its excellent biocompatibility and nontoxic nature make such a membrane highly attractive to medical applications for removal of pathogens and other unwanted biological constituents with sizes greater than 50 nm from highly complex medium.  相似文献   

11.
Three-dimensional, dendritic micrometer-scale spheres of alkali metal hydrogen titanate 1D nanostructures (i.e., nanowires and nanotubes) have been generated using a modified hydrothermal technique in the presence of hydrogen peroxide and an alkali metal hydroxide solution. Sea-urchin-like assemblies of these 1D nanostructures have been transformed into their hydrogen titanate analogues (lepidocrocite HxTi2-x/4squarex/4O4 (x approximately 0.7, square: vacancy)) by neutralization as well as into their corresponding anatase TiO2 nanostructured counterparts through a moderate high-temperature annealing dehydration process without destroying the 3D hierarchical structural motif. The as-prepared hollow spheres of titanate and titania 1D nanostructures have overall diameters, ranging from 0.8 to 1.2 microm, while the interior of these aggregates are vacuous with a diameter range of 100 to 200 nm. The constituent, component titanate and TiO2 1D nanostructures have a diameter range of 7+/-2 nm and lengths of up to several hundred nanometers. A proposed two-stage growth mechanism of these hollow micrometer-scale spheres was supported by time-dependent scanning electron microscopy, atomic force microscopy, and inductively coupled plasma atomic emission spectrometry data. We have also demonstrated that these assemblies are active photocatalysts for the degradation of synthetic Procion Red dye under UV light illumination.  相似文献   

12.
The adsorption and reaction in supercritical CO2 of the titanate coupling reagent NDZ-201 on the surfaces of seven metal oxide particles, SiO2, Al2O3, ZrO2, TiO2 (anatase), TiO2 (rutile), Fe2O3, and Fe3O4, was investigated. FTIR and TG analysis indicated that the adsorption and reaction were different on different particle surfaces. On SiO2 and Al2O3 particles, there was a chemical reaction of the titanate coupling reagent on the surfaces. On the surfaces of ZrO2 and TiO2 (anatase) particles, there were two kinds of adsorption, weak and strong adsorption. On the surfaces of TiO2 (rutile), Fe2O3, and Fe3O4 particles, there was only weak adsorption. The acidity or basicity of the OH groups on the particle surface was the key factor that determined if a surface reaction occurred. When the OH groups were acidic, the titanate coupling reagent reacted with these, but otherwise, there was no reaction. The surface density of OH groups on the original particles and the amount of titanate coupling reagent adsorbed and reacted were estimated from TG analysis. The reactivity of the surface OH groups of Al2O3 particles was higher than that of the SiO2 particles.  相似文献   

13.
Titanate nanoribbons were prepared via a hydrothermal treatment of rutile-type TiO2 powders in a 10 M NaOH solution at 200 °C for 48 h. The as-prepared titanate nanoribbons were then hydrothermally post-treated at 150 °C for 12-36 h. The titanate nanoribbons before and after hydrothermal post-treatment were characterized with FESEM, XRD, TEM, UV-VIS and nitrogen adsorption-desorption isotherms. The results showed that the hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO2, but also was beneficial to the removal of Na+ ions remained in the titanate nanoribbons. After hydrothermal post-treatment, the TiO2 samples retained the one-dimensional structure feature of the titanate nanoribbons and showed an obvious increase in the specific surface area and the pore volume.  相似文献   

14.
A complex titania nanostructure of monodisperse spiky mesoporous anatase beads composed of anatase nanocrystals with diameters of less than 15 nm in the core and much larger hollow‐cone shaped spikes on the surface was fabricated using a facile solvothermal process in the presence of ammonia. This proceeded through a controllable phase transformation from an amorphous titania to a metastable amorphous titania/ammonium titanate core‐shell structure then finally to anatase titania. The size of the spiky anatase nanostructures can be increased from approximately 55×100 nm to 160×410 nm (square edge×length) by increasing the ammonia concentration used in the solvothermal treatment step from 2.2 to 17.4 wt. %. Such hollow‐cone shaped nanostructures, as revealed by HRTEM characterization, are single crystals elongated along the c axis of the tetragonal anatase titania. The resultant spiky titania beads have high surface areas of up to 112 m2g?1 and pore diameters and pore volumes that vary depending on the ammonia concentration and solvothermal treatment time. The morphological evolution and crystallization process of the spiky titania beads was investigated using SEM and XRD techniques. A metastable amorphous titania/ammonium titanate core‐shell structure evolved from the smooth amorphous precursor beads producing a “fluffy” titanate intermediate, on further heating the final spiky mesoporous titania beads were clearly observed. This titanate‐phase‐mediated approach allows control over the size of the nanocrystals in the core of the bead, as well as the anatase spikes on the surface, and thereby, tuning of the surface area and porosity of the resultant products. The spiky mesoporous titania beads have been used to prepare working electrodes for dye‐sensitized solar cells achieving a solar to electric power conversion efficiency of 10.30 %, indicating their potential for application in the photovoltaic field. Such complex titania nanostructures would have a number of other possible applications, such as photocatalysis, lithium ion batteries, and catalysis.  相似文献   

15.
以不同二氧化钛为原料, 用水热法制备一维钛酸盐纳米材料. 原料一次粒径和晶体结构对一维纳米钛酸盐的形貌和结构的影响很大. 原料的一次粒径越小, 反应过程中产物的形貌和晶相转变越快; 纯锐钛矿相有利于钛酸盐纳米管的形成, 而少量金红石相则有利于纳米管向纳米线的进一步转变和晶相转变.  相似文献   

16.
This paper describes the fabrication of barium strontium titanate (Ba0.6Sr0.4TiO3 or BST) nanofibers by electrospinning method using a solution that contained poly(vinylpyrrolidone) and a sol-gel solution of BST. The as-spun and calcined BST/PVP composite nanofibers were characterized by TG-DTA, X-ray diffraction, FT-IR, SEM and TEM, respectively. After calcination of the as-spun BST/PVP composite nanofibers at above 700 degrees C in air for 2 h, BST nanofibers of 188+/-25 nm in diameter having well-developed cubic-perovskite structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Calcination at below 700 degrees C resulted in amorphous phase whereas BST with second phase such as barium titanate were formed at above 700 degrees C. Diameters of the nanofibers decreased from 208+/-35 to 161+/-18 nm with increasing calcination temperature between 600 and 800 degrees C.  相似文献   

17.
We present a facile vapor-phase hydrothermal approach for direct growth of vertically aligned titanate nanotubes on a titanium foil substrate. The resultant nanotubes display external diameters of 50-80 nm and walls with an average thickness of 10 nm that consist of more than 10 titanate layers. This is in strong contrast to the titanate nanotubes obtained from alkaline liquid-phase hydrothermal methods, which are generally smaller than 12 nm in external diameter and have walls consisting of less than five titanate layers. Importantly, the investigation confirmed that under vapor-phase hydrothermal conditions, the nanotubes were formed via a distinctive nanosheet roll-up mechanism that differs remarkably from those of conventional liquid-phase hydrothermal processes. For the first time, a coaxial circular cylinder crystal structure of the resultant nanotubes was confirmed.  相似文献   

18.
Titanium dioxides (TiO2) nanoparticles with one-dimensional (1D) geometry, nanorods and nanostripes, were used as photocatalysts to photodegrade Rhodamine B (RhB) under ultraviolet (UV) and visible irradiation. The nanorods catalyst exhibited very interesting photocatalytic properties: under the UV irradiation its catalytic activity was slightly below that of the well-known TiO2 catalyst P25, while under visible light it exhibited a better activity than P25.This fact indicates that the nanorods have a superior ability to utilize less energetic but more abundant visible light. Moreover, the 1D TiO2 nanoparticles can be readily separated from aqueous suspensions by sedimentation after the reaction. With these advantages the 1D TiO2 catalysts have a great potential for environmental applications. Various analytical techniques were employed to characterize TiO2 catalysts and monitor the photocatalytic reaction. It was found that the catalytic performance of the catalysts is greatly dependent on their structures: The superior activity of P25 (consists of anatase and rutile nanocrystals) under UV light results probably from the interfacial interaction between anatase and rutile nanocrystals in this solid, which do not exist in the nanorods (only anatase). The titanate nanostripes (titanate) can absorb UV photons with shorter wavelength only.  相似文献   

19.
TiO2 nanofibers were prepared from tetrabutyl titanate sol precursors by using electrospun method. X-ray diffraction (XRD) and atomic force microscope (AFM) were used to characterize their crystal structure and morphology feature. The results demonstrated that TiO2 nanofibers possessed anatase phase and the average diameter of TiO2 nanofibers was about 150 nm. The photocatalytic property of TiO2 nanofibers was evaluated for the photodecomposition of methyl orange solution. And TiO2 nanofibers exhibited high photocatalytic activities with transfer efficiency about 100% after 20 min.  相似文献   

20.
Chemical potential phase stability diagrams were calculated from relevant thermodynamic properties and used to predict the thermodynamic driving force under prospective conditions of room temperature mechanosynthesis. One analysed the dependence of chemical potential diagrams on temperature and partial pressure of evolving gases such as oxygen or carbon dioxide, as expected on using strontium peroxide or strontium carbonate as precursor reactants for the alkali earth component. Thermodynamic calculations were also obtained for changes in titania precursor reactants, including thermodynamic predictions for reactivity of strontium carbonate with amorphous titania. Experimental evidence showed that strontium titanate can be obtained by mechanosynthesis of strontium carbonate+anatase mixtures, due to previous amorphization under high energy milling. Ability to perform mechanosynthesis with less energetic milling depends on the suitable choice of alternative precursor reactants, which meet the thermodynamic requirements without previous amorphization; this was demonstrated by mechanosynthesis from anatase+strontium peroxide mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号