首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
复合酸掺杂导电聚苯胺的性能研究   总被引:2,自引:0,他引:2  
以苯胺为单体、过硫酸胺为氧化剂,由化学氧化聚合法在磺基水杨酸和硫酸的复合酸的水溶液中合成导电聚苯胺,并通过压片法、激光粒度分析、扫描电镜、差热分析及红外光谱对掺杂态聚苯胺的电导率、表面形貌及结构进行了研究.结果表明,复合酸掺杂聚苯胺的热稳定性比仅用硫酸掺杂聚苯胺的有了很大的提高;所得导电聚苯胺的粒度分布比较均匀(平均粒径约15.4μm);复合酸掺杂使聚苯胺分子链上的电荷呈离域化,掺杂程度提高.  相似文献   

2.
二硫二磺酸掺杂聚苯胺电化学性能的研究   总被引:4,自引:0,他引:4  
用聚有机二硫化物与聚苯质共混,是提高聚苯胺的电化学性能的有效方法之一.以二硫二磺酸为掺杂剂掺杂的聚苯胺,可明显地改善聚苯胺的电化学活性,使聚苯胶与掺杂剂中的-S-S-在相同的区域内共同参与氧化还原反应,提高了聚苯胺的电容量和充放电循环性.  相似文献   

3.
导电聚合物由于有很大的应用前景而引起了很多研究者的兴趣。在导电聚合物中,聚苯胺由于具有很高的导电性、热稳定性、容易制备等性质而受到了格外的关注。但是聚苯胺同样有缺点,例如应用范围狭小、很难进行加工等。为了提高聚苯胺的加工性能,乳液聚合是一种有效的改性方法。本文讨论了用乳液聚合或反相乳液聚合合成聚苯胺以及聚苯胺的共聚物,同时也报道了聚苯胺与其它物质复合共混和掺杂的研究结果,并且研究了它们的结构以及各方面的性能。通过改性,可使得聚苯胺的加工性得到很好的改善。  相似文献   

4.
采用再掺杂方法制得了樟脑磺酸掺杂的聚苯胺(PAn-CSA),用溶液共混法制备PAn/BR导电复合膜.研究了聚苯胺与顺丁橡胶(BR)复合膜在间甲酚二次掺杂前后电导率的变化。实验表明:CSA对聚苯胺有较好的掺杂作用;二次掺杂使PAn复合膜电导率明显提高,其导电渗滤阈值略有降低,使卷曲的二次掺杂PAn链展开并通过分子链间的相互作用而自行组成导电通路.  相似文献   

5.
血红蛋白生物催化合成导电聚苯胺   总被引:1,自引:0,他引:1  
利用血红蛋白在十二烷基磺酸钠阴离子表面活性剂胶束体系中生物催化合成水溶性导电聚苯胺/十二烷基磺酸复合物(PANI/SDS), 讨论了不同反应体系及溶液pH值对聚合反应产物的影响. 结果表明该反应具有明显的pH值依赖性, pH (1.0~4.0)是合成导电聚苯胺所必需的, 其最适pH值为3.0, 聚苯胺由导电的翠绿亚胺盐转变为本征态发生在pH 10.4. 用元素分析法、紫外-可见分光光度法、FT-IR、循环伏安法、粘度测试、电导率测试、热重分析法等对PANI/SDS复合物表征, 结果表明该复合物具有较好的热稳定性和可逆的电化学活性.  相似文献   

6.
自1976年发现第一个有机聚合物聚乙炔掺杂后具有类似金属的导电性以来,先后发现了聚吡咯、聚噻吩和聚苯胺(PAn)等导电聚合物,其中聚苯胺以其合成方法简单、稳定性好、较高的电导率及良好的电化学性能等被预言为是最有应用前景的导电高分子材料之一。近年来,随着导电聚合物研究的广泛开展和不断深入,  相似文献   

7.
二次掺杂对聚苯胺导电复合物性能的影响   总被引:3,自引:1,他引:3  
研究了聚苯胺与(苯乙烯-丁二烯)三嵌段共聚物或氯碘化聚乙烯复合物在间甲酚二次掺杂前后电导率的变化(提高2个数量级),根据二次掺杂使聚苯胺复合物增强永久形变和断面形貌脆断一次掺杂使卷曲的聚苯胺链展开并通过这间的弱相互作用而自行组成导电能通路,复合物二次掺杂前后的抗张强度和伸长率变化不大,说明其主链间的弱相互作用对应力无贡献,此外,还研究了二次掺杂对复合物在中性和酸必南中电致变色活性的影响。  相似文献   

8.
聚苯胺是目前研究最为广泛的导电高分子材料之一,具有特殊的电学、光学性能,在电子工业、信息工程、国防工程等的应用开发进行了深入研究。聚苯胺经掺杂后可形成P型和N型导电态,这种掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,而掺杂度受pH值和电位等因素的影响,且电化学活性同比传统锂电极材料在充放电过程中具有更优异的可逆性能,因此有关在设计聚苯胺参与锂电池电极复合材料的研究也越来越受到重视。本文综述了不同结构聚苯胺锂离子电池复合材料的制备方法,并着重介绍了聚苯胺基复合材料锂离子电池等领域研究的电化学性能,最后展望了聚苯胺基复合材料的应用前景。  相似文献   

9.
聚苯乙烯磺酸掺杂聚苯胺的性能   总被引:4,自引:0,他引:4  
以苯胺为单体,过硫酸铵(APS)为氧化剂,在聚苯乙烯磺酸(PSSA)的水溶液中,合成了PSSA掺杂的聚苯胺。通过FTIR、元素分析和热重分析等对产物的结构和性能进行了研究。结果表明:该法合成的PSSA掺杂聚苯胺可完全溶于水,具有较高的特性粘数、电导率、耐热性。  相似文献   

10.
通过乳化剂OP-10的乳化作用,将油相为溶有苯胺单体的1-丁基-3-甲基咪唑六氟磷酸盐([bmim]PF6)离子液体与水形成了水包油型微乳液.利用该微乳液制备了纳米粒径的导电聚苯胺颗粒.红外光谱和能量散射谱分析结果表明,离子液体负离子已掺杂进入聚苯胺分子链,所得聚苯胺颗粒热稳定性和电化学稳定性好,且具有良好的充放电性能.  相似文献   

11.
Conductivity stability at thermal environment of conductive polyaniline‐complexes/polyimide (PANI‐complexes/PI) blends, which were doped by camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA), respectively, were investigated by conductivity measurements, electron spin resonance (ESR) spectra, differential and scanning thermometer (DSC). In the conversion process of PANI/Polyamic acid (PAA) to PANI/PI, the blend endeavored some kinds of alteration such as decomplexation of moisture and solvent, dissociation of dopant, crosslinking of PANI chain, and the imidization of PAA chain. PANI‐DBSA/PI showed higher thermal stability of conductivity than PANI‐CSA/PI, and both samples showed nearly linear decay of conductivity with increasing temperature showing greatly enhancement of conductivity stability. When they were exposed at near or over glass transition temperature, the conductivity decay became faster. The conductivity stability at base environment was also higher for PANI‐DBSA/PI due to difficulty in accessing of hydroxyl ion to PANI, which were resulted from dopant. DBSA‐doped blends showed increased polaron mobility and concentration at relatively high temperature, which led to extremely higher conductivity and its stability at high temperature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Polyaniline (PANI), N-methyl- and N-ethyl-PANI, 2- and 3-ethyl-PANI as well as 2,6-dimethyl- and 3,5-dimethyl-PANI have been synthesized using ammonium persulfate as catalyst. These polymers have been studied in the undoped and doped state by FT-IR and electronic spectroscopy in the range from the UV-VIS to the NIR portion of the spectrum. As doping agent camphorsulfonic acid was used. The chemical structures of the N-methyl- and N-ethyl-PANI have been found to contain quinoneimine units along the polymer chain. In the doped state the N-alkyl-PANIs show the polaronic band transition in the NIR part of the spectrum, at longer wavelength than doped unsubstituted PANI. A similar but less pronounced phenomenon is observed in the case of ethyl-substituted phenyl rings of PANI. Dimethyl-substitution at the phenyl ring of PANI hinders the formation of high molecular weight polymer. Only oligomers are formed.The thermal stability of unsubstituted PANI in the undoped state is very high and N-alkyl substitution and phenyl ring substitution lowers the thermal stability of PANI. Doped samples show a significantly worse thermal resistance in comparison to the corresponding undoped samples, this is due essentially to the volatility and the decomposition of the protonic acid used as dopant. Good general agreement has been found between the predicted thermal stability on the basis of increment groups calculations and the experimental results.The thermal decomposition of unsubstituted and undoped PANI has been followed by FT-IR spectroscopy.  相似文献   

13.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

14.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

15.
A new family of functional materials is reported for organic solvent nanofiltration, with excellent chemical stability and high retention of solute molecules. Integrally skinned asymmetric polyaniline (PANI) membranes were fabricated from concentrated solutions of doped PANI by phase inversion. Doped PANI solutions were prepared by adding organic acids directly to PANI dissolved in a mixture of NMP and 4-methyl piperidine before casting. Among the organic acids investigated, maleic acid, phthalic acid, sulfosalicylic acid and camphorsulfonic acid were able to dope PANI without causing gelation. These acids acted as soft templates, creating nanoporosity in the thin skin layer of the asymmetric PANI film. Their removal by alkaline extraction created membranes through which small solvent molecules can pass. After extracting the organic acids, the membranes were thermally crosslinked which conferred excellent solvent stability. These membranes had a molecular weight cut-off (MWCO) in the range of 150–250 g mol−1 in methanol, making them the tightest OSN membranes reported to date. It was found that an increase in crosslinking temperature or time led to a decrease in solvent flux. PANI membranes were found to be resistant to a variety of organic solvents such as ethyl acetate, acetonitrile and acetone. These remarkable membranes have the potential to be used in OSN operations at high temperatures (up to 150 °C), and gave increasing fluxes with increasing temperature while maintaining a high solute rejection.  相似文献   

16.
A hybrid approach has been adopted by using a combination of colloidal graphite (CG) as a conducting filler, 5‐lithium sulfoisophthalic (LiSIPA) acid as a dopant, and polyaniline (PANI) as a matrix to prepare LiSIPA doped PANI–CG composites. The thermal stability (~300°C) and electrical conductivity (67.4 S/cm at 17.4% CG content) have been improved significantly as compared to PANI doped with conventional inorganic dopants like HCl or H2SO4 (130–150°C). The maximum shielding effectiveness value was found to be ?39.7 dB. X‐ray diffraction and infrared spectroscopy showed a systematic shifting of the characteristic peaks and bands with increase in the amount of CG, which indicates significant interaction exists between CG and PANI. The UV–Vis spectra showed the characteristic bands of PANI, with a shift to shorter wavelength with increase in the CG content. The interaction mechanism between doped PANI and CG in the resultant composites has been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Molecular recognition plays a significant role in the counterion-induced processibility, morphological features, and physical properties of doped polyaniline (PANI). The interaction of the counterion and solvent controls the chain conformation and, as a result, the formation of extended and localized electronic states; hence, it holds the key for tuning a wide range of electrical and optical properties of doped PANI. The combined effects of counterion, solvent, and processing conditions tune the metal-insulator transition, temperature dependence of conductivity, magnetoresistance, and so forth in doped PANI. The typical examples are shown in the case of PANI doped by camphor sulfonic acid, 2-acrylamido-2-methyl-1-propane sulfonic acid, and dodecylbenzoyl sulfonic acid.  相似文献   

18.
Composites based on conductive organic/inorganic fillers dispersed in insulating matrix have been widely investigated because of their widespread applications such as electromagnetic shielding, electrostatic discharge, and sensors. In this context, novel composite materials based on epoxy resin matrix charged with polyaniline (PANI)‐doped para‐toluene sulfonic acid were elaborated. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to check the structure and the morphology of the samples. Viscoelastic behavior and thermal stability of the composites were explored by dynamic mechanical thermal analysis and thermogravimetric analysis. It was shown that the PANI particles exhibited a partial crystalline structure and were homogeneously dispersed in epoxy matrix. Consequently, this structure affected the thermal stability and viscoelastic properties of the composites. Furthermore, the dielectric and electrical properties were investigated up to 1 MHz. Measurements of dielectric properties revealed that with loading fillers in matrix, the dielectric parameters increased to high values at low frequency then decreased at values around 40 and 32 of real and imaginary parts, respectively, at 1 MHz with 15% of PANI content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

20.
In the presence of acrylic acid (AA) as a primary dopant, polyaniline (PANI) doped with poly(acrylic acid) was successfully synthesized by using ammonium persulfate (APS) as initiator and oxidizing agent. The effect of experimental conditions on the polymer yields was systematically studied. It was found that the polymer yield can be as high as 65%, and this value strongly depends on synthesis conditions, such as the reaction time, the molar ratio of oxidizing agent to aniline monomer, the concentration of reactants and reaction temperature. The molecular weight ( ) of main chains of the de‐doped PANI is estimated to be 32,000–53,000. Based on the data of FT‐IR, UV‐vis, 13C‐nuclear magnetic resonance (NMR), elemental analysis and electrical conductivity measurement, the emeraldine salt form of PANI was confirmed and the molecular structure of the resulting PANI‐AA was proposed. Accordingly the reaction mechanism was discussed and it was convinced that the polymerization reaction of AA is initiated by APS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号