首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with diglycolamide (DGA) through chemical covalent route. The adsorption behavior of the DGA-functionalized-MWCNTs (DGA-MWCNTs) towards thorium from aqueous solution was studied under varying operating conditions of pH, concentration of thorium, DGA-MWCNTs dosages, contact time, and temperature. The effective range of pH for the removal of Th(IV) is 3.0–4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The equilibrium data are best fitted with Langmuir model. The equilibrium Th(IV) sorption capacity was estimated to be 10.58 mg g?1 at 298 K. The standard enthalpy, entropy, and free energy of adsorption of the thorium with DGA-MWCNTs were calculated to be 8.952 kJ mol?1, 0.093 kJ mol?1 K?1 and -18.521 kJ mol?1 respectively at 298 K. The determined value of sticking probability (0.072) and observed kinetic and isotherm models reveal the chemical adsorption of thorium on DGA-MWCNTs.  相似文献   

2.
An activated carbon from Coconut (Cocos nucifera) shells was prepared by physical activation with carbon dioxide and water vapor. The activated carbon obtained has a surface area of 1058 m2 g?1 and such a high micropore volume of 0.49 cm3 g?1. This carbon was studied for the removal of lead from water. Sorption studies were performed at 30 °C, at different pH and adsorbent doses, in batch mode. Lead precipitation was observed on the surface of the activated carbon. Maximum adsorption occurred at pH 9 for an adsorbent dose of 2 g L?1. Kinetic studies, at the initial concentration of 150 mg L?1 of lead, pH 5 and an adsorbent dose of 1 g L?1, yielded an equilibrium time of 50 h for this activated carbon. The kinetic data were modeled with the pseudo first order, the pseudo second order and the Bangham models. The pseudo second order model fitted the data well. The sorption rate constant (7 × 10?4 mol?1 Kg s?1) and the maximum amount of lead adsorbed (0.23 mol kg?1) are quite good compared to the data found in literature. Sorption equilibrium studies were conducted in a concentration range of lead from 0 to 150 mg L?1. In an aqueous lead solution with an initial concentration of 30 mg L?1, at pH 5, adsorbent dose 1 g L?1, activated Coconut shell carbon removed at equilibrium 100 % of the heavy metal. The equilibrium data were modeled with the Langmuir and Freundlich equations, of which the former gave the best fit. The Langmuir constants Qmax eq (0.23 mol kg?1) and KL (487667 L mol?1) are in good agreement with literature. XPS studies identified adsorbed species as lead carbonates and/or lead oxalates and precipitates as lead oxide and/or lead hydroxide on the activated carbon surface. The Coconut shell activated carbon is a very efficient carbon due to its high surface area, to the presence of many micropores on its surface and to the presence surface groups like hydroxyls promoting adsorption in the porous system and lead crystal precipitation on the activated carbon surface.  相似文献   

3.
Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L?1 of sunflower straw in an initial U (VI) concentration of 20 mg L?1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g?1) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir–Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g?1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent.  相似文献   

4.
In large volumes produced activated sludges from wastewater treatment plants (WWTPs) with low concentrations of heavy metals can be utilized as agricultural fertilizers and soil conditioners. Increased contents of toxic xenobiotics are limiting factors that affect the utilization of these heterogeneous wastes. The main aim of our paper was to show the utilization of dried activated sludge (DAS) from municipal WWTP as potential Co2+ ions sorbent i.e. for non-agricultural purposes. The radio indicator method by radionuclide 60Co and γ-spectrometry for characterization DAS sorption properties was used. DAS soluble and solid fractions were characterized by biochemical, ETAAS and CEC analysis. The sorption of Co2+ ions by DAS was rapid process and equilibrium was reached within 2 h. Sorption capacity of DAS (Q) increased with the initial concentration of CoCl2 in the range from 100 to 4,000 μmol l?1, reaching 20 and 160 μmol g?1. Obtained Q values were depent on pH value from 2.0 to 8.0. The maximum sorption capacity (Q max) of DAS at pH 6 calculated from mathematical model of Langmuir adsorption isotherm was 175 ± 9 μmol g?1. FT-IR analyses showed the crucial role of carboxyl functional groups of DAS surfaces on cobalt uptake. For confirmation ion-exchange mechanism in sorption process of Co2+ ions by DAS scanning electron microscopy and EDX analysis were used.  相似文献   

5.
The ability of oxygen-rich carbon spheres (CSs) produced by hydrothermal carbonization with the glucose has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of CSs were characterized by FT-IR and SEM. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CSs showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 25 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be ?16.88, 12.09 kJ mol?1 and 197.87 J mol?1 K?1, respectively, which demonstrated the sorption process of CSs towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CSs could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 3.0 g CSs.  相似文献   

6.
A silica-based adsorbent, (DtBuCH18C6 + dodecanol)/SiO2-P, which is used for selective separation of Sr(II) from high level liquid wastes, against temperature and gama-irradiation was investigated. The adsorption characteristics of Sr(II), Ba(II), La(III), Nd(III), Gd(III) and Dy(III) under varying nitric acid concentration at different temperatures were measured by batch method. The adsorbent showed higher distribution coefficients (K d) for Sr(II) compared to other tested metal ions, and the K d values of Sr(II) decreased with increasing temperature. Thermodynamic parameters of the adsorption process were calculated. The related parameters in adsorption isotherm models were obtained using a non-linear fitting. Uptake capacity from 0.38 to 0.43 mmol g?1 was obtained for Sr(II) in the temperature range of 298–323 K by the Langmuir equation fitting. The leakage of total organic carbon was below 120 ppm at 298 K and 180 ppm at 323 K, respectively. The degradation of the adsorbent irradiated in 2 M HNO3 was investigated. It is found that the adsorbed dose of γ-ray more than 50 KGy has a strong influence on K d of Sr(II). The K d values of Sr(II) decrease about 3 times ranged from 50 to 500 KGy.  相似文献   

7.
Granular and monolith carbon materials were prepared from African palm shell by chemical activation with H3PO4, ZnCl2 and CaCl2 aqueous solutions of different concentrations. Adsorption capacity of carbon dioxide and methane were measured at 298 K and 4,500 kPa, and also of CO2 at 273 K and 100 kPa, in a volumetric adsorption equipment. Correlations between the textural properties of the materials and the adsorption capacity for both gases were obtained from the experimental data. The results obtained show that the adsorption capacity of CO2 and CH4 increases with surface area, total pore volume and micropore volume of the activated carbons. Maximum adsorption values were: 5.77 mmol CO2 g?1 at 273 K and 100 kPa, and 17.44 mmol CO2 g?1 and 7.61 mmol CH4 g?1 both at 298 K and 4,500 kPa.  相似文献   

8.
Batch experiments are carried out for the sorption of La(III) onto commercial macroporous resins containing iminodiacetic (Lewatit TP 207) and aminomethylphosphonic acid groups (Lewatit TP 260). The operating variables studied are initial La(III) concentration, pH, temperature and contact time. Since the extraction kinetics were fast, with a mixture of 0.1 g of resin and 5 mL of lanthanum ions 0.5 × 10?3 mol L?1 solution, extraction equilibrium was reached within 30 min of mixing. The optimum pH values level for quantitative sorption were between 1.5 and 4.6 with Lewatit 207 and about 5.2 with Lewatit TP 260. The sorption capacities of Lewatit TP 207 and Lewatit TP 260 resins are 114.7 and 106.7 mg g?1, respectively. Adsorption equilibrium data were calculated for Langmuir and Freundlich isotherms. It was found that the sorption of La(III) on Lewatit TP 207 was better suited to the Langmuir adsorption model while Freundlich adsorption model fitted better sorption on Lewatit TP 260. Thermodynamics data leads to endothermic and spontaneous process. ΔG° decreases with increasing temperature indicating that sorption process of La(III) on both Lewatit TP 207 and Lewatit TP 260 was more favored at high temperature.  相似文献   

9.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ?(298 K), ? and ? were determined to be ?7.7, 21.5 k J mol?1 and 98.2 J mol?1 K?1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.  相似文献   

10.
The densities of 1-n-butyl-3-methylimidazolium ([Bmim]) based amino acid ionic liquids (AAILs) prepared from glycine [Gly], alanine [Ala], and valine [Val], namely [Bmim][Gly], [Bmim][Ala] and [Bmim][Val], in aqueous?~?0.2 mol·kg?1 polyethylene glycol (PEG400, PEG600 or PEG1000) and PEG400 solutions containing?~?(0.0946, 0.1891 and 0.3820) mol·kg?1 of [Bmim][Gly], have been determined at 298.15 K. The experimental densities were used to evaluate the apparent molar volumes in the mixed solvent system and further used to obtain transfer molar volumes of AAILs for their transfer from water to aqueous PEG solutions and of PEG400 for its transfer from water to aqueous solutions containing (0.0946, 0.1891 and 0.3820) mol·kg?1 of [Bmim][Gly]. The transfer molar volumes of AAILs and of PEG400 are found to be negative. The effects of alkyl chain-length variation on the anion of AAILs as well as the chain-length of PEG on transfer molar volumes are investigated and discussed in terms of hydrophobic–hydrophilic, hydrophobic–hydrophobic, and ion–hydrophobic interactions.  相似文献   

11.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of thorium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest thorium sorption capacity at initial pH of 3.0 and contact time of 175 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △G°(298 K), △H° and △S° were determined to be -0.74 kJ·mol?1, 9.17 kJ·mol?1 and 33.24 J·mol?1·K?1, respectively, which demonstrated the sorption process of CMK-3 towards Th(IV) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.02 mol/L HCl solution for the removal and recovery of Th(IV).  相似文献   

12.
Third generation poly(amido)amine (PAMAM) dendron was grown on the surface of styrene divinylbenzene (SDB) by divergent polymerization method. This new chelating resin (PAMAMG3-SDB) has been investigated in liquid–solid extraction of thorium. The effects of analytical parameters such as pH, contact time, concentration of thorium, resin dose and temperature on adsorption were investigated. Kinetic and isotherm studies of the adsorption were also carried out to understand the nature of adsorption of thorium on the chelating resin. Kinetic data followed a pseudo-second-order model and equilibrium data were best fitted with Langmuir model. The maximum adsorption capacity of thorium ions was determined to be 36.2 mg g?1 at 298 K. Thermodynamic parameters such as standard enthalpy, entropy, and free energy of adsorption of thorium on PAMAMG3-SDB were calculated as ?10.498 kJ mol?1, 0.0493 kJ mol?1 K?1 and ?25.208 kJ mol?1 respectively at 298 K from temperature dependent equilibrium data.  相似文献   

13.
The sorption behaviour of Cd(II) on three carbon-based materials including activated carbon (AC), carbon nanotubes (CNTs) and carbon-encapsulated magnetic nanoparticles (CEMNPs) which were prepared under similar conditions by nitric acid treatment were investigated. Generally, sorption of cadmium on these materials increased with the increase of pH. For AC and CNTs very similar results were obtained, while CEMNPs exhibits much higher affinity for Cd(II) despite of almost the same surface acidity. Thus, cadmium retention on tested sorbents was more dependent on the concentration of specific active sites than the total surface area available. The equilibrium sorption data were better fitted to Langmuir isotherm. The theoretical saturation capacity of the monolayer derived from this model at pH 8.0 for AC, CNTs and CEMNPs are 9.91 mg g?1, 20.37 mg g?1 and 91.0 mg g?1, respectively. The kinetic of Cd(II) sorption is fitted for pseudo-second order equation and could be described as a combination of film diffusion and intra-particle diffusion, whereby the last one dominates. The experimental parameters for preconcentration of cadmium on a microcolumn packed with CEMNPs prior to its determination by flame atomic absorption spectrometry have been investigated. Cadmium can be quantitatively retained at pH 8 from sample volumes up to 150 mL and then eluted completely with 3 mL of 0.5 mol L?1 HNO3.  相似文献   

14.
The enthalpies of solution of l-proline in aqueous electrolyte solutions within the electrolyte molality range up to 4.9 mol kg?1 of NaCl and up to 4.0 mol kg?1 of KCl at 288, 298 and 313 K have been measured by the calorimetric method. Enthalpies of transfer of l-proline from water to aqueous electrolyte solutions up to saturation have been derived at 273–348 K. The enthalpic and heat capacity parameters of pair and triplet interaction of l-proline with electrolyte in water have been evaluated. Enthalpic parameters of pair interaction at 298 K have been compared to similar parameters for glycine and l-alanine. The temperature changes of reduced enthalpy, and also the change of entropy and reduced Gibbs energy of transfer of l-proline from water to aqueous electrolyte solution at temperature rise from 273 to 323 K have been determined. It has been shown that the entropy–enthalpy compensation takes place for transfer processes.  相似文献   

15.
The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be ?14.4, 36.1 kJ mol?1 and 169.7 J mol?1 K?1, respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC.  相似文献   

16.
Modified loofah was prepared by a simple chemical graft method to improve its adsorption for cationic dyes. Experimental results showed that the maximum amounts of basic magenta and methylene blue loaded on the modified loofah were 83.5 and 85.5 mg g?1, and that on the unmodified loofah were 22.2 and 33.7 mg g?1, respectively. The adsorption for both dyes could reach equilibrium after 300 min. A pseudo-second-order model is suitable for describing the adsorption and desorption kinetics of both dyes on the modified sorbent. According to the intra-particle diffusion model, sorption and desorption processes for the two dyes both presented two distinct phases and were mainly controlled by intra-particle diffusion. The dye-loaded modified loofah could be regenerated by using the mixture solution of HCl and ethanol (VHCl:Vethanol = 3:2) as eluent. Adsorption in the binary system showed that adsorption of the dyes was depressed by the presence of the other dye, and the two dyes could be removed efficiently when the initial concentrations were lower than 5.0 × 10?5 mol L?1. The Langmuir competitive model was suitable to predict the sorption isotherm in the binary system.  相似文献   

17.
Loris Pietrelli 《Adsorption》2013,19(5):897-902
Poly(ethylene glycol) (PEG) is a water-soluble polymer commonly found in industrial and domestic wastewaters. In this study the adsorption onto granular activated carbon (GAC) of PEG, of different molecular weights, from aqueous solutions was examined to evaluate its applicability to wastewater treatment. Batch kinetic models have been tested to predict the rate constant of adsorption. The amount of PEG adsorbed on activated carbon depends mainly on the pH, the MW and on the solution characteristics. The adsorption at fixed temperature decrease by MW (PEG-8000 < PEG-3350 < PEG-1450) a polymer chain conformation modification can explain these effect. The large values of adsorption capacity (>350 mg/g) at low and high pH values show a great potential for GAC. The adsorption process can be described well with the Langmuir and the pseudo first order equation. The effective intraparticle diffusion coefficients of PEG molecules in the GAC adsorbent varying according to the MW values in the range 8.45 × 10?3–9.71 × 10?7.  相似文献   

18.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

19.
The adsorption processes of alizarin onto hydrophilic carbon nanoparticles (Emperor 2000?) are investigated. The significant increase in voltammetric responses for pre-adsorbed alizarin compared with those for solution confirms high affinity of alizarin to carbon nanoparticles (possibly due to π–π stacking interaction between aromatic rings of alizarin and surface-sulfonated carbon nanoparticles). To obtain the optimum of adsorption conditions, the effects of pH, agitation rate, and adsorption time are investigated. Under square wave voltammetry conditions, the peak current for the reduction of alizarin shows a linear relationship with concentration in the range from 2.0 to 10.0 nM. The limit of detection is estimated 5.8?×?10?9 mol L?1. Next, alizarin is applied as a receptor for sensing of trace vanadium in acetate buffer pH 5. Linear calibration curves are obtained for vanadium in the range of 1.0?×?10?6 to 1.0?×?10?4 mol L?1 and the limit of detection is estimated 9.6?×?10?8 mol L?1. Determination of vanadium in real samples such as sea and tap water is demonstrated.  相似文献   

20.
A low-cost, highly efficient and eco-friendly cellulose-based adsorbent (CMGT) was synthesized and used to uptake Pb(II) and malachite green (MG) from aqueous solutions. The CMGT was characterized by FTIR, SEM, TGA and XRD. Different experimental parameters were evaluated in batch adsorption experiments to determine the optimal adsorption conditions. The optimal pHs for Pb(II) and MG were 5.5 and 7.0, respectively; the optimal contact times for Pb(II) and MG were 60 and 180 min, respectively. Among the Langmuir, Freundlich and Temkin isotherm models, the Langmuir model fitted the adsorption data best for both Pb(II) and MG adsorption. In theory, the maximum adsorption capacities of Pb(II) and MG were 584.80 and 131.93 mg g?1, respectively. The pseudo-second-order model fitted the experimental data very well, and the thermodynamics were also used to discuss the mechanism in depth. Additionally, desorption tests showed that CMGT could be effectively regenerated by 0.2 mol L?1 HCl solution and could be reused for at least six cycles successively with a stable sorption ability in the dynamic adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号