首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An experimental apparatus which allows to measure adsorption isotherms for binary, ternary or quaternary mixtures for pressures between vacuum and 5.0 MPa and temperatures between 263 K and 373 K is presented. This system couples gravimetric and chromatographic techniques. The use of a mass spectrometer as gas analyzer allows to investigate a large variety of gases (such as carbon dioxide, hydrogen sulfide, mercaptans). In this paper, we measure the binary adsorption of hydrogen sulfide in a methane matrix on a commercial activated carbon at 1.0 MPa and at 298 K. Molar ratio in hydrogen sulfide is between 10 mol. ppm and 3 mol.%. Experimental results are then compared to simulated ones. The model which is tested is the classical Ideal Adsorbed Solution theory. This simulation step requires the pure gas equilibrium data obtained and fitted with the Langmuir’s law, which are also presented here.  相似文献   

3.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

4.
Adsorption isotherms of H2S, CO2, and CH4 on the Si-CHA zeolite were measured over pressure range of 0–190 kPa and temperatures of 298, 323, and 348 K. Acid gases adsorption isotherms on this type of zeolite are reported for the first time. The isotherms follow a typical Type-I shape according to the Brunauer classification. Both Langmuir and Toth isotherms describe well the adsorption isotherms of methane and acid gases over the experimental conditions tested. At room temperature and pressure of 100 kPa, the amount of CO2 adsorption for Si-CHA zeolite is 29 % greater than that reported elsewhere (van den Bergh et al. J Mem Sci 316:35–45 (2008); Surf Sci Catal 170:1021–1027 (2007)) for the pure silica DD3R zeolite while the amounts of CH4 adsorption are reasonably the same. Si-CHA zeolite showed high ideal selectivities for acid gases over methane at 100 kPa (6.15 for H2S and 4.06 for CO2 at 298 K). Furthermore, H2S adsorption mechanism was found to be physical, and hence, Si-CHA can be utilized in pressure swing adsorption processes. Due to higher amount of carbon dioxide adsorbed and lower heats of adsorption as well as three dimensional channels of Si-CHA pore structure, this zeolite can remove acid gases from methane in a kinetic based process such as zeolite membrane.  相似文献   

5.
Given the great interest in the CO2 removal and decreasing their impact on the environment, in this work, a calorimetric study of CO2 adsorption on different activated carbons was performed. For this purpose, we used two methodologies for the determination heat of CO2 adsorption: determination of CO2 isotherms at different temperatures and adsorption calorimetry. The heats determined by these two techniques were compared. In this regard, carbonaceous materials of granular and monolithic types were prepared, characterized, and functionalized for carbon dioxide adsorption. As precursor material, African palm stones that were activated with H3PO4 and CaCl2 at different concentrations was used. The obtained materials were functionalized in gas phase with NH3 and liquid phase with NH4OH, with the intention to incorporate the surface basic groups (amines or nitrogen groups) and subsequently were studied for CO2 adsorption at 273 K and atmospheric pressure. For characterization of these materials, the following techniques are used: N2 adsorption at 77 K and immersion calorimetry in different solvents. The experimental results show the obtaining of micropores and mesoporous (moderately) materials, with surface area between 430 and 1,425 m2 g?1 and pore volumes between 0.17 and 0.53 cm3 g?1. It was determined that there is a difference between the heats of CO2 adsorption obtained by the techniques employed. This deviation between the values corresponds to the methodological difference between the two experiments. In this work, we obtained a maximum adsorption capacity of CO2, which is greater than 334 mg CO2 g?1 at 273 K and 1 bar in carbon materials with moderate surface area and pores volume.  相似文献   

6.
Adsorption and desorption of methane by activated carbon (AC) at constant temperature and at various pressures were investigated. The effect of moisture was also studied. A volumetric method was used, up to 40 bar, at a temperature of 273.5 K. Results of a dry AC sample were compared with those obtained from a moist sample and two different ACs with different physical and surface properties were used. As expected, the results showed that the existence of moisture, trapped in the AC pores, could lead to a decrease in the amount of methane adsorbed and a decrease in the amount of methane delivered during desorption. To model the experimental results, a large variety of adsorption isotherms were used. The regressed parameters for the adsorption isotherms were obtained using the experimental data generated in the present study. The accuracy of the results obtained from the different adsorption isotherms was favorably compared.  相似文献   

7.
The knowledge about the adsorption and diffusion properties (specially about diffusion) of aluminophosphate molecular sieves is very scarce in the literature. These materials offer interesting properties as adsorbents as they have a polar framework and do not contain charge-balancing cations. In this work, the adsorption isotherms of nitrogen, methane and carbon dioxide over an AlPO4-11 sample synthesized in our laboratories have been measured with a volumetric method at 25, 35, 50 and 65 °C over a pressure range up to 110 kPa. The adsorption capacities of each gas are determined by the strength of interaction with the pore surface (carbon dioxide > methane > nitrogen). The equilibrium selectivity to carbon dioxide is quite high with respect to other adsorbents without cations due to the polarity of the aluminophosphate framework. The adsorption Henry’s law constants and diffusion time constants of nitrogen, methane and carbon dioxide in the synthesized AlPO4-11 material have been measured from pulse experiments. A pressure swing adsorption (PSA) process for recovering methane from a carbon dioxide/methane mixture (resembling biogas) has been designed using a dynamic model where the measured adsorption equilibrium and kinetic information has been incorporated. The simulation results show that the proposed process could be simpler than other PSA processes for biogas upgrading based on cation-containing molecular sieves such as 13X zeolite, as it can treat the biogas at atmospheric pressure, and it requires a lower pressure ratio, to produce high purity methane with high recovery.  相似文献   

8.
The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.  相似文献   

9.
The removal of some of pollutants including catechol, 3-methylcatechol, 3-methoxycatechol, and 2,3-dihydroxybenzoic acid by adsorption onto activated carbon cloth (ACC) at 35.0 ± 0.1°C was investigated. The equilibrium experimental data were fitted to Langmuir, Freundlich, Temkin, Langmuir-Freundlich, and Redlich-Peterson isotherms. Also the kinetic experimental data were fitted to the pseudo-first-order and pseudo-second-order kinetic models. It was found that the pseudo-second-order model describes the kinetic of adsorption better than the other one. By comparing the obtained results with the previously reported data, it can be concluded that ACC is a high efficient adsorbent for removal of phenolic compounds from aqueous solutions.  相似文献   

10.
In this study, the adsorption characteristics of crystal violet (CV) and Congo red (CR) dyes from the aqueous solution onto prepared activated carbon were examined. The activated carbon was prepared from wood apple shell by chemical activation with ZnCl2. The parameters studied were the effect of contact time, initial dyes concentration, and pH of solution. The experimental equilibrium data were analyzed and fitted to Langmuir, Freundlich, and Temkin isotherms. The maximum monolayer adsorption capacities of CV and CR dyes were found to be 142.85 and 83.33 mg per gram of prepared activated carbon at 298 K. The kinetic data obtained at different concentrations were analyzed using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. Batch adsorption kinetic studies showed that the adsorption of dyes followed pseudo-second-order kinetics and at four different concentrations of both dyes, indicating that chemisorption is the rate-limiting step. Thermodynamic studies reveal that the removal of dyes from aqueous solution onto activated carbon was a spontaneous, feasible, and endothermic process at a temperature greater than standard equilibrium temperature.  相似文献   

11.
巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸   总被引:3,自引:0,他引:3  
根据299K下甲烷在活性炭中的吸附实验数据,通过调节狭缝微孔的孔宽参数,利用巨正则系综MonteCarlo(GCEMC)方法得到不同孔宽下流体的微观结构以及吸附等温线.比较并拟合模拟结果和实验数据,确定了活性炭微孔的平均孔宽,为下一步求解微孔尺寸分布以及为预测吸附剂在不同温度下吸附不同吸附质分子时的吸附性能提供了基础与指导.模拟中,甲烷分子采用单点Lennard-Jones球型分子模型,活性炭用狭缝孔来近似表征,流体分子与单个狭缝墙的相互作用采用著名的Steele的10-4-3势能模型.模拟表明,此方法为考察介孔材料的微孔分布以及微孔平均孔宽提供了新的思路.  相似文献   

12.
A new method for the determination of the micropore volume distribution function of activated carbons is presented. It is based on the treatment of pure gas adsorption isotherms by a theoretical model derived from the Hill-de Boer theory. Adsorption data (isotherms and heat curves) for carbon dioxide, ethane and ethylene on activated carbon (F30/470 CHEMVIRON CARBON) have been provided by a thermobalance coupled to a calorimeter (TG-DSC 111 SETARAM) at different temperatures (233, 273, 303 and 323 K) for pressures up to 100 kPa. Adsorption isotherms of carbon dioxide and ethane at 303 and 323 K have been used for the determination of the micropore volume distribution function of the activated carbon of interest. The knowledge of its structure has then allowed the simulation of adsorption isotherms and heats for the same adsorbates at the same temperatures as those experimentally studied. Similar calculations have been conducted for ethylene. Whatever the adsorbate (carbon dioxide and ethane used for the determination of the micropore volume distribution function or ethylene), the mean deviation between experimental and calculated isotherms does not exceed 4% at quasicritical and supercritical temperatures (303 and 323 K). In the same temperature conditions, discrepancies between calculation and experiment reach about 10% for adsorption heats. For both isotherms and heats, large discrepancies appear at low temperature (233 and 273 K). This method allows the determination of the micropore volume distribution function of activated carbons. The validity of the results is insured using several isotherms of several adsorbates and taking into account the calorimetric effect of the phenomenon. That is the reason why this method can also be seen as a new possible model for pure gas adsorption data prediction. This paper also presents a brief summary of the state of the art in this field.  相似文献   

13.
Sorption isotherms for trifluoromethane (R-23) in activated carbon have been measured at ca. 298 and 323 K using a gravimetric microbalance. High-resolution TEM images of the activated carbon show a very uniform microstructure with no evidence of any contaminants. The adsorption in the activated carbon reaches about 22.8 mol kg?1 at 2.0 MPa and 298 K or 17.6 mol kg?1 at 2.0 MPa and 323 K. Three different adsorption models (Langmuir, multi-site Langmuir, and BET equations) have been used to analyze the activated carbon sorption data, with a particular interest in the heat of adsorption (?ΔH). The heat of adsorption for R-23 in the activated carbon was about 29.78 ± 0.04 kJ mol?1 based on the multi-site Langmuir model and is within the range of typical physical adsorption. According to the IUPAC classification, the activated carbon exhibits Type I adsorption behavior and was completely reversible. Compared with our previous work for the sorption of R-23 in zeolites (5A (Ca,Na-A), 13X (Na-X), Na,K-LSX, Na-Y, K,H-Y, Rb,Na-Y) and ionic liquids ([omim][TFES] and [emim][Tf2N]) the activated carbon had the highest adsorption capacity. The adsorption process in the activated carbon also took less time than in the zeolites or the ionic liquids to reach thermodynamic equilibrium.  相似文献   

14.
In this paper we present the measured isotherms of nitrogen, methane, ethane, and propane on three carbons: Norit RB2, Chemviron AP 4-60, and highly activated Saran. The measurements are taken at temperatures between 300 and 400 K, in 20 K steps. The measured data is fitted to the Sips adsorption model, where the Sips parameters are determined by a linearization method. The Sips parameters are further adjusted to realize a logic dependence on temperature and the parameter characteristics are discussed. Subsequently, the Sips model is modified to incorporate the temperature dependence. Including the temperature dependence results in a slightly higher error relative to the experimental results (typically 10 % as compared to 6 %). The immediate research product is a convenient expression for every adsorbate-adsorbent system which is discussed in this paper, for calculating the adsorption concentration as a function of temperature and pressure. A more general research product is a better understanding of the Sips parameter characteristics that should help in developing future adsorbents on demand.  相似文献   

15.
High specific capacitance and low cost are the critical requirements for a practical supercapacitor. In this paper, a new activated carbon with high specific capacitance and low cost was prepared, employing cotton stalk as the raw material, by using the phosphoric acid (H3PO4) chemical activation method. The optimized conditions were as follows: the cotton stalk and activating agent with a mass ratio of 1:4 at an activation temperature of 800 °C for 2 h. The samples were characterized by nitrogen adsorption isotherms at 77 K. The specific surface area and pore volume of activated carbon were calculated by Brunauer–Emmett–Teller (BET) and t-plot methods. With these experimental conditions, an activated carbon with a BET surface area of 1,481 cm2?g?1 and micropore volume of 0.0377 cm3?g?1 was obtained. The capacitance of the prepared activated carbon was as high as 114 F?g?1.The results indicate that cotton stalk can produce activated carbon electrode materials with low cost and high performance for electric double-layer capacitor.  相似文献   

16.
甲烷在活性炭上吸附平衡模型的研究   总被引:1,自引:0,他引:1  
比较吸附模型分析甲烷在活性炭上吸附平衡的适用性,为吸附式天然气(ANG)的工程应用提供准确的预测模型。基于在温度268.15~338.15 K、压力0~12.5 MPa测试的甲烷在Ajax活性炭上的吸附平衡数据,选择Langmuir、Langmuir-Freundlich和Toth方程,应用非线性回归拟合方程参数后,确定绝对吸附量和甲烷吸附相态,并比较方程在不同压力区域内的预测精度。结果表明,甲烷吸附相密度随平衡温度和压力变化;由绝对吸附量确定的甲烷在Ajax活性炭上的平均等量吸附热为15.72 kJ/mol,小于由过剩吸附量的标绘结果;Langmuir、Langmuir-Freundlich和Toth方程预测结果在0~0.025 MPa的累积相对误差为6.449 8%、7.918 4%和0.910 0%,在1~10 MPa为0.491 1%、0.161 3%和0.369 4%。Toth方程在整个压力范围内的预测结果最为准确,但Langmuir-Freundlich方程在较高压力区域内具有较高的预测精度。  相似文献   

17.
18.
In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.  相似文献   

19.
In order to assess and improve the quality of high pressure and temperature adsorption isotherms and differential enthalpies of adsorption on microporous and mesoporous materials, a specific thermostated device comprising a differential heat flow calorimeter coupled with a home-built manometric system has been built. The differential heat flow calorimeter is a Tian Calvet Setaram C80 model which can be operated isothermally, the manometric system is a stainless steel homemade apparatus. The thermostated coupled apparatus allows measurements for pressure up to 2.5?MPa and temperature from 303 to 423?K. Reliability and reproducibility were established by measuring adsorption isotherms on a benchmark sorbent (Filtrasorb F400). A detailed experimental study of the adsorption of pure carbon dioxide and methane has been made on activated carbons (Filtrasorb F400 and EcoSorb); a new procedure for determining the differential enthalpies of adsorption based on the stepwise method is also proposed. The error in the determination of the amount adsorbed is about 3.6%, and the error in the determination of the differential enthalpies of adsorption is 4%.  相似文献   

20.
The adsorption isotherms of CO2, CO, N2, CH4, Ar, and H2 on activated carbon and zeolite LiX were measured using a volumetric method. Equilibrium experiments were conducted at 293, 308, and 323 K and pressures up to 1.0 MPa. The adsorption isotherm and heat of adsorption were analyzed for two pressure regions of experimental data: pressures up to 0.1 MPa and up to 1.0 MPa. Each experimental isotherm was correlated by the Langmuir, Sips, Toth and temperature dependent Sips isotherm models, and the deviation of each model was evaluated. The Sips and Toth models showed smaller deviation from the experimental data of adsorbents than the Langmuir model. Isosteric heats of adsorption were calculated by the temperature dependent Sips model and are presented along with surface loading. From deviation analysis, it is recommended that the isotherm in the proper pressure range be used to appropriately design adsorptive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号