首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.  相似文献   

2.
One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 A? as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 A? over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ~220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.  相似文献   

3.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

4.
Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration R(G) for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.  相似文献   

5.
Structural and dynamical properties of liquid trimethylphosphine (TMP), (CH(3))(3)P, as a function of temperature is investigated by molecular dynamics (MD) simulations. The force field used in the MD simulations, which has been proposed from molecular mechanics and quantum chemistry calculations, is able to reproduce the experimental density of liquid TMP at room temperature. Equilibrium structure is investigated by the usual radial distribution function, g(r), and also in the reciprocal space by the static structure factor, S(k). On the basis of center of mass distances, liquid TMP behaves like a simple liquid of almost spherical particles, but orientational correlation due to dipole-dipole interactions is revealed at short-range distances. Single particle and collective dynamics are investigated by several time correlation functions. At high temperatures, diffusion and reorientation occur at the same time range as relaxation of the liquid structure. Decoupling of these dynamic properties starts below ca. 220 K, when rattling dynamics of a given TMP molecules due to the cage effect of neighbouring molecules becomes important.  相似文献   

6.
An ab initio Quantum Mechanical Charge Field Molecular Dynamics Simulation (QMCF MD) was performed to investigate structure and dynamics behavior of hydrated sulfur dioxide (SO(2)) at the Hartree-Fock level of theory employing Dunning DZP basis sets for solute and solvent molecules. The intramolecular structural characteristics of SO(2), such as S═O bond lengths and O═S═O bond angle, are in good agreement with the data available from a number of different experiments. The structural features of the hydrated SO(2) were primarily evaluated in the form of S-O(wat) and O(SO(2))-H(wat) radial distribution functions (RDFs) which gave mean distances of 2.9 and 2.2 ?, respectively. The dynamical behavior characterizes the solute molecule to have structure making properties in aqueous solution or water aerosols, where the hydrated SO(2) can easily get oxidized to form a number of sulfur(VI) species, which are believed to play an important role in the atmospheric processes.  相似文献   

7.
Shielding of ionic interactions by sulfur dioxide in an ionic liquid   总被引:1,自引:0,他引:1  
The effect of adding SO2 on the structure and dynamics of 1-butyl-3-methylimidazolium bromide (BMIBr) was investigated by low-frequency Raman spectroscopy and molecular dynamics (MD) simulations. The MD simulations indicate that the long-range structure of neat BMIBr is disrupted resulting in a liquid with relatively low viscosity and high conductivity, but strong correlation of ionic motion persists in the BMIBr-SO2 mixture due to ionic pairing. Raman spectra within the 5相似文献   

8.
Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ~48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R)?D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.  相似文献   

9.
Five models for the site-site intermolecular pair interactions of methane are compared in some detail and used to investigate both structural and dynamical properties of the dense liquid deuteromethane by means of molecular dynamics (MD) simulations. The orientational distribution probabilities of molecular pairs are carefully analyzed for each anisotropic potential model. We propose a revision of existing classification methods used to group the innumerable relative orientations of methane-methane pairs into six basic geometries. With this new approach, our results for the probability of the six basic categories as a function of the intermolecular distance are different from the ones present in the literature, where the role of the angular spread on the anisotropic interaction energy is not taken in full consideration and certain configurations with no significant change in the pair-potential are assigned to different categories. The analysis of the static orientational correlations in liquid methane and the prevalence of certain configurations in different ranges guide the subsequent discussion of the MD model-dependent results for the dynamic structure factor. Comparison with our inelastic neutron scattering results for liquid CD(4) at the nanometer and picosecond space and time scales allows us to confirm the full adequacy of the Tsuzuki, Uchimaru and Tanabe model of 1998 with respect to more recent potentials.  相似文献   

10.
Neutron diffraction with isotopic substitution (NDIS) experiments and molecular dynamics (MD) simulations have been used to characterize the structure of aqueous guanidinium carbonate (Gdm2CO3) solutions. The MD simulations found very strong hetero-ion pairing in Gdm2CO3 solution and were used to determine the best structural experiment to demonstrate this ion pairing. The NDIS experiments confirm the most significant feature of the MD simulation, which is the existence of strong hetero-ion pairing between the Gdm+ and CO3(2-) ions. The neutron structural data also support the most interesting feature of the MD simulation, that the hetero-ion pairing is sufficiently strong as to lead to nanometer-scale aggregation of the ions. The presence of such clustering on the nanometer length scale was then confirmed using small-angle neutron scattering experiments. Taken together, the experiment and simulation suggest a molecular-level explanation for the contrasting denaturant properties of guanidinium salts in solution.  相似文献   

11.
Molecular dynamics (MD) simulations of the glass-former 2Ca(NO(3))(2·3KNO(3), CKN, were performed as a function of temperature at pressures 0.1 MPa, 0.5 GPa, 1.0 GPa, and 2.0 GPa. Diffusion coefficient, relaxation time of the intermediate scattering function, and anion reorientational time were obtained as a function of temperature and densitiy ρ. These dynamical properties of CKN scale as ρ(γ)∕T with a common value γ = 1.8 ± 0.1. The scaling parameter γ is consistent with the exponent of the repulsive part of an effective intermolecular potential for the repulsion between the atoms at shortest distance in the equilibrium structure of liquid CKN, Ca(2+), and oxygen atoms of NO(3)(-). Correlation between potential energy and virial is obeyed for the short-range terms of the potential function, but not for the whole potential including coulombic interactions. Decoupling of diffusion coefficient and reorientational relaxation time from relaxation time take place at a given ρ(γ)∕T value, i.e., breakdown of Stokes-Einstein and Debye-Stokes-Einstein equations result from combined thermal and volume effects. The MD results agree with correlations proposed between long-time relaxation and short-time dynamics, lnτ ∝ 1∕, where the mean square displacement concerns a time window of 10.0 ps. It has been found that scales as ρ(γ)∕T above and below the glass transition temperature, so that thermodynamic scaling of liquid dynamics can be thought as a consequence of theories relating short- and long-time dynamics, and the more fundamental scaling concerns short-time dynamical properties.  相似文献   

12.
A detailed investigation of the phase diagram of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF(6)]) is presented on the basis of a wide set of experimental data accessing thermodynamic, structural, and dynamical properties of this important room temperature ionic liquid (RTIL). The combination of quasi adiabatic, continuous calorimetry, wide angle neutron and X-ray diffraction, and quasi elastic neutron scattering allows the exploration of many novel features of this material. Thermodynamic and microscopic structural information is derived on both glassy and crystalline states and compared with results that recently appeared in the literature allowing direct information to be obtained on the existence of two crystalline phases that were not previously characterized and confirming the view that RTILs show a substantial degree of order (even in their amorphous states), which resembles the crystalline order. We highlight a strong connection between structure and dynamics, showing the existence of three temperature ranges in the glassy state across which both the spatial correlation and the dynamics change. The complex crystalline polymorphism in [bmim][PF(6)] also is investigated; we compare our findings with the corresponding findings for similar RTILs. These results provide a strong experimental basis for the exploration of the features of the phase diagram of RTILs and for the further study of longer alkyl chain salts.  相似文献   

13.
The general trend in soft matter is to study systems of increasing complexity which are more technologically and biologically relevant. This is facilitated by the capability of quasielastic neutron scattering (QENS) to selectively probe spatially resolved dynamical modes at a molecular level. The large number of recent publications using QENS for investigating complex and multi-component soft matter systems, serves as recognition of the suitability of this technique by the scientific community. Exploiting its complementarity with molecular dynamics (MD) simulations and other experimental techniques is the basis of a successful methodology for this scientific challenge. We illustrate the potential of QENS with three kinds of soft materials whose structural units increase in size/complexity: lipids, polymers and biomolecules.  相似文献   

14.
Knowledge about the dynamical properties of a protein is of essential importance for understanding the structure–dynamics–function relationship at the atomic level. So far, however, the correlation between internal protein dynamics and functionality has only been studied indirectly in steady‐state experiments by variation of external parameters like temperature and hydration. In the present study we describe a novel type of (laser‐neutron) pump‐probe experiment, which combines in situ optical activation of the biological function of a membrane protein with a time‐dependent monitoring of the protein dynamics using quasielastic neutron scattering. As a first successful application we present data obtained selectively in the ground state and in the M‐intermediate of bacteriorhodopsin (BR). Temporary alterations in both localized reorientational protein motions and harmonic vibrational dynamics have been observed during the photocycle of BR. This observation is a direct proof for the functional significance of protein structural flexibility, which is correlated with the large‐scale structural changes in the protein structure occurring during the M‐intermediate. We anticipate that functionally important modulations of protein dynamics as observed here are of relevance for most other proteins exhibiting conformational transitions in the time course of functional operation.  相似文献   

15.
We have studied the amino acid L-leucine (LEU) using inelastic neutron scattering, X-rays and neutron diffraction, calorimetry and Raman scattering as a function of temperature, focusing on the relationship between the local dynamics of the NH(3), CH(3), CH(2) and CO(2) moieties and the molecular structure of LEU. Calorimetric and diffraction data evidenced two novel phase transitions at about 150 K (T(1)) and 275 K (T(2)). The dynamical susceptibility function, obtained from the inelastic neutron scattering results, shows a re-distribution of the intensity of the vibrational bands that can be directly correlated with the phase transitions observed at T(1) and T(2), as well as with the already reported phase transition at T(3) = 353 K. Through the analysis of the Raman modes, the new structural arrangement observed below T(1) was related to conformational modifications of the CH and CH(3) groups, while the behavior of the N-H stretching vibration, ν(NH(3)), gave insight into the intermolecular N-H…O interactions. The observation of changes in the translational symmetry in the crystalline lattice, as well as anharmonic dynamics, allows for localized motions in LEU.  相似文献   

16.
Structural investigations of deuterated liquid formamide were performed by using neutron scattering, ab-initio calculations and classical Molecular Dynamics (MD) simulations. The recorded neutron data are analysed to yield the total structure factor SM (Q), the molecular form factor F (Q), the distinct pair correlation function gL(r) and particularly the deuterium-oxygen signature of H-bond interactions. Neutron scattering data, as well as recent x-ray studies, clearly show that the local order of the liquid is largely described by one dimer, two trimers and one tetramer. Molecular Dynamics simulations show that neutron scattering data can be reproduced by three different force fields.  相似文献   

17.
We have studied the dynamics of bis-thiourea pyridinium chloride and bromide by means of quasielastic neutron scattering (QENS). The QENS data allow describing the geometry of the in-plane motion of the pyridinium cation and reveal that it is similar to the motion previously observed in bis-thiourea pyridinium iodide. Molecular dynamics (MD) simulations have been performed to investigate the cation dynamics on the high temperature phase of the full series of compounds: bis-thiourea pyridinium chloride, bromide and iodide. Three different models of intermolecular potential have been tested and the agreement between the simulated and experimental elastic incoherent structure factors (EISFs) is used to select the more realistic one. The detailed analysis of the MD results indicates that Coulombic interactions together with the formation of hydrogen bonds between the pyridinium cation and the host sublattice influence strongly the geometry of the in-plane cation reorientation.  相似文献   

18.
We have performed a detailed and comprehensive analysis of the dynamics of water molecules and hydronium ions in hydrated Nafion using classical molecular dynamics simulations with the DREIDING force field. In addition to calculating diffusion coefficients as a function of hydration level, we have also determined mean residence time of H(2)O molecules and H(3)O(+) ions in the first solvation shell of SO(3)(-) groups. The diffusion coefficient of H(2)O molecules increases with increasing hydration level and is in good agreement with experiment. The mean residence time of H(2)O molecules decreases with increasing membrane hydration from 1 ns at a low hydration level to 75 ps at the highest hydration level studied. These dynamical changes are related to the changes in membrane nanostructure reported in the first part of this work. Our results provide insights into slow proton dynamics observed in neutron scattering experiments and are consistent with the Gebel model of Nafion structure.  相似文献   

19.
Molecular dynamics (MD) computer simulations of liquid water adsorbed on the muscovite (001) surface provide a greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural and orientational ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model phyllosilicate surface. MD simulations at constant temperature and volume (statistical NVT ensemble) were performed for a series of model systems consisting of a two-layer muscovite slab (representing 8 crystallographic surface unit cells of the substrate) and 0 to 319 adsorbed H2O molecules, probing the atomistic structure and dynamics of surface aqueous films up to 3 nm in thickness. The results do not demonstrate a completely liquid-like behavior, as otherwise suggested from the interpretation of X-ray reflectivity measurements and earlier Monte Carlo simulations. Instead, a more structurally and orientationally restricted behavior of surface H2O molecules is observed, and this structural ordering extends to larger distances from the surface than previously expected. Even at the largest surface water coverage studied, over 20% of H2O molecules are associated with specific adsorption sites, and another 50% maintain strongly preferred orientations relative to the surface. This partially ordered structure is also different from the well-ordered 2-dimensional ice-like structure predicted by ab initio MD simulations for a system with a complete monolayer water coverage. However, consistent with these ab initio results, our simulations do predict that a full molecular monolayer surface water coverage represents a relatively stable surface structure in terms of the lowest diffusional mobility of H2O molecules along the surface. Calculated energies of water adsorption are in good agreement with available experimental data.  相似文献   

20.
Difference and double-difference near-infrared DO-D and HO-H stretching overtone (2nuOD and 2nuOH) spectroscopy and a rigorous (physically substantiated) band deconvolution technique were applied to reveal three different kinds of inherent (interstitial) structures of liquid water, which determine its high density (compared to ice lh under ambient conditions), its compressibility (under hydrostatic pressure, up to 300MPa), and its high fragility (manifested under temperature variation). Our data processing allowed the rigorous discrimination of up to six vibrational components. On the basis of an extensive comparative analysis combined with available structural data (X-ray and neutron scattering) and molecular dynamics (MD) simulations for liquid water, as well as with experimental and computed data for small non-tetrahedrally arranged water clusters, the major four components could be ascribed to: i) The basic lh icelike substructure; ii) the temperature-dependent remote interstitial "defects" due to tetrahedral displacements (primarily responsible for transport properties); iii) the interstitial "defects" most probably arranged in quasiplanar noncyclic tetramers (totally absent in the ice structure); and iv) the interstitial "defects" formed with increasing pressure, probably arranged in cubic water octamers and composed of two pairs of noncyclic and cyclic tetramer fragments. The latter structures include, essentially, bent hydrogen bonds stabilized by resonance effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号