In this study a series of melt mixed multi-walled carbon nanotube (MWNT)/Polyethylene composites with several carbon nanotube (CNTs) concentrations were investigated. A good dispersion of the nanotubes in the matrix was seen using scanning electron microscopy. Melt rheological measurements in dynamic mode were used to estimate the percolation state of the CNTs within the polymer and to provide information about the structure of the CNT/polymer composites. The effect of nanotubes on the non-isothermal crystallization behaviour of the nanocomposites was also studied by differential scanning calorimetry. 相似文献
Stable nanofluids containing multi-walled carbon nanotubes (MWNTs) treated by concentrated acid and mechanical mill technology have been prepared. Water, ethylene glycol, glycerol, and silicone oil were used as base fluids. The rheological behaviors of the obtained nanofluids with different MWNT volume fractions and at different temperatures were investigated in details. The glycerol based and silicone oil based fluids behave Newtonian manner in all studied MWNT volume fractions and temperatures. The dispersant hexamethyldisiloxane added in silicone oil decreases the silicone oil viscosity but has no effect on the rheological properties of nanofluids. For the water based nanofluids, MWNTs act as lubricative function when the MWNT volume fraction is lower. Furthermore, for the ethylene glycol based and glycerol based fluid, almost no viscosity augmentation appears when the temperature is higher than 55°C. 相似文献
Multiwall carbon nanotubes (MWNT) were modified orderly with carboxyl groups and amino groups. The MWNT/gold nanoparticle composites were formed when the amino‐functionalized MWNT was interacted with gold colloids. The functionalized MWNT was characterized using Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The amino‐functionalized MWNT allows further attaching gold nanoparticles through electrostatic interaction between the negatively charged gold nanoparticles and amino groups on the surface of the MWNT. The composite of gold nanoprticles and amino‐functionalized MWNT was characterized by transmission electron microscopy. This method decorating carbon nanotubes can be used to identify the location of functional groups, i.e. defect sites on carbon nanotubes. 相似文献
The growth mechanism of armchair single-walled carbon nanotube was studied theoretically by AM1 method as implemented in Gaussian03 program. The following results were obtained. (1) Let C2 radicals be the carbon source for the growth of the carbon nanotube, then the most likely growth mechanism would be as follows. An intermediate is formed firstly by the direct addition of C2 radical to the open end of the carbon nanotube without an energy barrier, then via a transition state the reaction produces the product, i.e., C2 becomes the component of the hexagon of the nanotube. (2) From (3,3) to (6,6), the activation energy decreases (from 66.8 to 46.1 kJ·mol?1), whereas the conjugation of the nanotube increases. (3) The distribution of the frontier molecular orbitals indicates that the two edges of the newly formed hexagon maybe grow easily. 相似文献
The morphological features of carbon nanotube (CNT) polymer composites and their influence on the effective modulus are evaluated. The considered features include bundle formation from the helical sub‐bundles made of individual CNTs. The formation of bundles is considered as a result of agglomeration of individual nanotubes above and below onset of percolation and is related to electrical conductivity. The proposed geometrical model yields a bundle diameter that agrees closely with that of the experimentally measured by voltage‐contrast method and scanning electron microscopy analysis of polyimide nanocomposites. The proposed micromechanical analytical model includes the helical structure of a bundle and provides close agreement of the effective Young's modulus of nanocomposite over a wide range of CNT content. It is shown that considering the helical structure of CNT bundles and its effect on bundle modulus is vital for predicting the effective modulus of CNT‐polymer nanocomposite.