首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

2.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

3.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

4.
The effects of finite measuring volume length on laser velocimetry measurements of turbulent boundary layers were studied. Four different effective measuring volume lengths, ranging in spanwise extent from 7 to 44 viscous units, were used in a low Reynolds number (Re=1440) turbulent boundary layer with high data density. Reynolds shear stress profiles in the near-wall region show that u v strongly depends on the measuring volume length; at a given y-position, u v decreases with increasing measuring volume length. This dependence was attributed to simultaneous validations on the U and V channels of Doppler bursts coming from different particles within the measuring volume. Moments of the streamwise velocity showed a slight dependence on measuring volume length, indicating that spatial averaging effects well known for hot-films and hot-wires can occur in laser velocimetry measurements when the data density is high.List of symbols time-averaged quantity - u wall friction velocity, ( w /)1/2 - v kinematic viscosity - d p pinhole diameter - l eff spanwise extent of LDV measuring volume viewed by photomultiplier - l + non-dimensional length of measuring volume, l eff u /v - y + non-dimensional coordinate in spanwise direction, y u /v - z + non-dimensional coordinate in spanwise direction, z u /v - U + non-dimensional mean velocity, /u - u instantaneous streamwise velocity fluctuation, U &#x2329;U - v instantaneous normal velocity fluctuation, V–V - u RMS streamwise velocity fluctuation, u 21/2 - v RMS normal velocity fluctuation, v 21/2 - Re Reynolds number based on momentum thickness, U 0/v - R uv cross-correlation coefficient, u v/u v - R12(0, 0, z) two point correlation between u and v with z-separation, <u(0, 0, 0) v (0, 0, z)>/<u(0, 0, 0) v (0, 0, 0)> - N rate at which bursts are validated by counter processor - T Taylor time microscale, u (dv/dt2)–1/2  相似文献   

5.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

6.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

7.
Summary The effect of fluid injection at the walls of a two-dimensional channel on the development of flow in the entrance region of the channel has been investigated. The integral forms of the boundary layer equations for flow in the channel were set up for an injection velocity uniformly distributed along the channel walls.With an assumed polynomial of the n-th degree for the one-parameter velocity profile a solution of the above boundary layer equations was obtained by an iteration method. A closed form solution was also obtained for the case when a similar velocity profile was assumed. The agreement between the entrance region velocity profiles of the present analysis for an impermeable-walled channel and of Schlichting1) and Bodoia and Osterle2) is found to be very good.The results of the analysis show that fluid injection at the channel walls increases the rate of the growth of the boundary layer thickness, and hence reduces considerably the entrance length required for a fully developed flow.Nomenclature h half channel thickness - L entrance length with wall-injection - L 0 entrance length without wall-injection - p static pressure - p=p/U 0 2 dimensionless pressure - Re=U 0 h/ Reynolds number at inlet cross-section - u velocity in the x direction at any point in the channel - =u/U 0 dimensionless velocity in the x direction at any point in the channel - U av average velocity at a channel cross-section - U c center line velocity - U 0 inlet cross-section velocity - c =U c /U 0 dimensionless center line velocity - v velocity in the y direction at any point in the channel - v 0 constant injection velocity of fluid at the wall - v=v/v 0 dimensionless velocity in the y direction at any point in the channel - x distance along the channel wall measured from the inlet cross-section - x=x/hRe dimensionless distance in the x direction - y distance perpendicular to the channel wall - y=y/h dimensionless distance in the y direction - thickness of the boundary layer - =/h dimensionless boundary layer thickness - =/ dimensionless distance within the boundary layer region - =v 0 h/ injection parameter or injection Reynolds number - kinematic viscosity - 1+ie - mass density of the fluid - parameter defined in (14)  相似文献   

8.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

9.
Finite-span circular cylinders with two different aspect ratios, placed in a cross-flow, are investigated experimentally at a cylinder Reynolds number of 46,000. Simultaneous measurements of the flow-induced unsteady forces on the cylinders and the stream velocity in the wake are carried out. These results together with mean drag measurements along the span and available literature data are used to evaluate the flow mechanisms responsible for the induced unsteady forces and the effect of aspect ratio on these forces. The coherence of vortex shedding along the span of the cylinder is partially destroyed by the separated flow emanating from the top and by the recirculating flow behind the cylinder. As a result, the fluctuating lift decreases drastically. Based on the data collected, it is conjectured that the fluctuating recirculating flow behind the cylinder is the flow mechanism responsible for the unsteady drag and causes it to increase beyond the fluctuating lift. The fluctuating recirculating flow is a direct consequence of the unsteady separated flow. The unsteady forces vary along the span, with lift increasing and drag decreasing towards the cylinder base. When the cylinder span is large compared to the wall boundary layer thickness, a submerged two-dimensional region exists near the base. As the span decreases, the submerged two-dimensional region becomes smaller and eventually vanishes. Altogether, these results show that fluctuating drag is the dominant unsteady force in finite-span cylinders placed in a cross-flow. Its characteristic frequency is larger than that of the vortex shedding frequency.List of symbols a span of active element on cylinder, = 2.5 cm - C D local rms drag coefficient, 2D/ U 2 da - C L local rms lift coefficient, 2l/ U 2 da - C D local mean drag coefficient, 2D/ U 2 da - C D spanwise-averaged C D for finite-span cylinder - (C D ) 2D spanwise-averaged mean drag coefficient for two-dimensional cylinder - C p pressured coefficient - -(C p ) b pressure coefficient at = - d diameter of cylinder, = 10.2 cm - D fluctuating component of instantaneous drag - D local rms of fluctuating drag - D local mean drag - E D power spectrum of fluctuating drag, defined as - E L power spectra of fluctuating lift, defined as - f D dominant frequency of drag spectrum - f L dominant frequency of lift spectrum - f u dominant frequency of velocity spectrum - h span of cylinder - H height of test section, = 30.5 cm - L fluctuating component of instantaneous lift - L local rms of fluctuating lift - R Du () cross-correlation function of streamwise velocity and local drag, - R Lu () cross-correlation function of stream wise velocity and local lift, - Re Reynolds number, U d/y - S L Strouhal number based on f L ,f L d/U - S D Strouhal number based on f D ,f D d/U - S u Strouhal number based on f u , f u d/U - t time - u fluctuating component of instantaneous streamwise velocity - U mean streamwise velocity - mean stream velocity upstream of cylinder - x streamwise distance measured from axis of cylinder - y transverse distance measured from axis of test section - z spanwise distance measured from cylinder base - angular position on cylinder circumference measured from forward stagnation - kinematic viscosity of air - density of air - time lag in cross-correlation function - D normalized spectrum of fluctuating drag - L normalized spectrum of fluctuating lift  相似文献   

10.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

11.
The thermal decomposition of nitric oxide (diluted in Argon) has been measured behind incident shock waves by means of IR diode laser absorption spectroscopy. In two independent runs the diode laser was tuned to the=0 =12 3/2 R(18.5)-rotational vibrational transition and the=1 =22 3/2 R(20.5)-rotational vibrational transition of nitric oxide, respectively. These two transitions originating from the vibrational ground state (=0) and the first excited vibrational state (=1) were selected in order to probe the homogeneity along the absorption path. The measured NO decomposition could satisfactorily be described by a chemical reaction mechanism after taking into account boundary layer corrections according to the theory of Mirels. The study forms a further proof of Mirels' theory including his prediction of the laminar-turbulent transition. It also shows, that the inhomogeneities from the boundary layer do not affect the IR linear absorption markedly.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

12.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

13.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

14.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

15.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

16.
Nonstationary vibration of a flexible rotating shaft with nonlinear spring characteristics during acceleration through a critical speed of a summed-and-differential harmonic oscillation was investigated. In numerical simulations, we investigated the influence of the angular acceleration , the initial angular position of the unbalance n and the initial rotating speed on the maximum amplitude. We also performed experiments with various angular accelerations. The following results were obtained: (1) the maximum amplitude depends not only on but also on n and : (2) when the initial angular position n changes. the maximum amplitude varies between two values. The upper and lower bounds of the maximum amplitude do not change monotonously for the angular acceleration: (3) In order to always pass the critical speed with finite amplitude during acceleration. the value of must exceed a certain critical value.Nomenclature O-xyz rectangular coordinate system - , 1, 1 inclination angle of rotor and its projections to thexy- andyz-planes - I r polar moment of inertia of rotor - I diametral moment of inertia of rotor - i r ratio ofI r toI - dynamic unbalance of rotor - directional angle of fromx-axis - c damping coefficient - spring constant of shaft - N nt ,N nt nonlinear terms in restoring forees in 1 and 1 directions - 4 representative angle - a small quantity - V. V u .V N potential energy and its components corresponding to linear and nonlinear terms in the restoring forees - directional angle - n coefficients of asymmetrical nonlinear terms - n coefficients of symmetrical nonlinear terms - coefficients of asymmetrical nonlinear terms experessed in polar coordinates - coefficients of symmetrical nonlinear terms expressed in polar coordinates - rotating speed of shaft - t time - n initial angular position of att=0 - p natural frequency - p 1.p t natural frequencies of forward and backward precessions - , 1, 1 total phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - , 1, 1 phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - P, R t ,R b amplitudes of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - difference between phases ( = fu) - acceleration of rotor - initial rotating speed - t t ,r b amplitudes of nonstationary oscillation during acceleration - (r t )max, (r b )max maximum amplitudes of nonstationary oscillation during acceleration - (r 1 1 )max, (r b 1 )max maximum value of angular acceleration of non-passable case - 0 critical value over which the rotor can always pass the critical speed - p 1,p 2,p 3,p 4 natural frequencies of experimental apparatus  相似文献   

17.
Transitional and turbulent oscillatory flow in a rigid pipe with long entry sections was investigated using flow visualization to establish the existence of coherent structures. Flow tracer and high speed motion pictures were used. The simple harmonic motion of a scotch yoke and flywheel linked to a piston and cylinder provided the flow driving force. The camera was convected with the flow by attaching it through a gearing system to the scotch yoke.List of symbols A cross sectional area of flow - C, K constants - D pipe diameter - N Re,ave Reynolds number based on average velocity (DU ave /v) - N Re,p Reynolds number based on maximum oscillatory velocity (DU max /v) - Reynolds number based on maximum oscillatory velocity and Stokes (boundary) layer thickness (U max /v) - R pipe radius - U instantaneous velocity in the flow direction - short-term average instantaneous velocity - U * friction velocity (U ave (f/2)1/2) - U amp amplitude parameter (U max /U ave ) - U ave average velocity - U s steady velocity - U t instantaneous oscillatory velocity - U max maximum oscillatory velocity ( X max /T) - u r , u z deviations from r, and z - y radial coordinate from wall (Rr) - y + dimensionless radial coordinate from wall (y U*/v) - frequency parameter [R (/v) 1/2] - Stokes (boundary) layer thickness [C (2 v/)1/2] - normalized time into cycle - fluid viscosity - v fluid kinematic viscosity (/) - density - angular frequency (2/T) - - overbar, average - sub-c critical value  相似文献   

18.
Turbulent tube flow and the flow through a porous medium of aqueous hydroxypropylguar (HPG) solutions in concentrations from 100 wppm to 5000 wppm is investigated. Taking the rheological flow curves into account reveals that the effectiveness in turbulent tube flow and the efficiency for the flow through a porous medium both start at the same onset wall shear stress of 1.3 Pa. The similarity of the curves = ( w ) and = ( w ), respectively, leads to a simple linear relation / =k, where the constantk or proportionality depends uponc. This offers the possibility to deduce (for turbulent tube flow) from (for flow through a porous medium). In conjunction with rheological data, will reveal whether, and if yes to what extent, drag reduction will take place (even at high concentrations).The relation of our treatment to the model-based Deborah number concept is shown and a scale-up formula for the onset in turbulent tube flow is deduced as well.  相似文献   

19.
This paper studies similarity solutions for pulsatile flow in a tube with wall injection and suction. The Navier-Stokes equations are reduced to a system of three ordinary differential equations. Two of the equations represent the effects of suction and injection on the steady flow while the third represents the effects of suction and injection on pulsatile flow. Since the equations for steady flow have been studied previously, the analysis centers on the third equation. This equation is solved numerically and by the method of matched asymptotic expansions. The exact numerical solutions compare well with the asymptotic solutions.The effects of suction and injection on pulsatile flow are the following: a) Small values of suction can cause a resonance-like effect for low frequency pulsatile flow. b) The annular effect still occurs but for large injection or suction the frequency at which this effect becomes dominant depends on the cross-flow Reynolds number. c) The maximum shear stress at the wall is decreased by injection, but may be increased or decreased by suction.Nomenclature a radius of the tube - a 0 2 i 2 - A0, B0, C0, D0, E0 constant coefficients appearing in the expression for pressure - b a non-dimensionalized length - b 0 2 i 2 2 - b k complex coefficients of a power series - B - C 1, C 2, D complex constants - d - D 1,2 - f() F(a 1/2)/aV - f 0,f 1,... functions of order one used in asymptotic expansions of f() - F(r) rv r - g() - G(r) a steady component of velocity in axial direction - h() 4/C0 a 2 H(a 1/2) - h 0,h 1,h 2,...;l 0,l 1,l 2,... functions of order one used in asymptotic expansions for h() in outer regions - H(r) complex valued function giving unsteady component of velocity - H 0, H 1, H 2, ... K 0, K 1, K 2, ...; L 0, L 1, L 2, ... functions of order one used in asymptotic expansions for h() in inner regions - i - J 0, J 1, Y 0, Y 1 Bessel functions of first and second kind - k - K Rk/2b 2 - O order symbol - p pressure - p 1(z, t) arbitrary function related to pressure - r radial coordinate - r 0 (1+16 4 4)1/4 - R Va/, the crossflow Reynolds number - t time - u() G(r)/V - v r radial velocity - v z axial velocity - V constant velocity at which fluid is injected or extracted - z axial coordinate - 2 a 2/4 - 4.196 - small parameter; =–2/R (Sect. 4); =–R/2 (Sect. 5); =2/R(Sect. 6) - r 2/a 2 - * 0.262 - Arctan (4 2 2) - , inner variables - kinematic viscosity - b - * zero of g() - density - (r, t) arbitrary function related to axial velocity - frequency  相似文献   

20.
Übersicht Bei stark abklingenden Funktionen wird die Übertragungsmatrix U() aufgespalten in die Anteilc U 1() e und U 2() e. Der zweite Term spielt am Rand = 0 keinc Rolle. Die unbekannten Anfangswerte sind über die Matrix U 1(0) an die bekannten gebunden und eindeutig bestimmbar.
Summary For strongly decaying solution functions the transfer matrix U() is splitted into the parts U 1() e and U 2() e. The second term does not influence at the boundary = 0. The unknown initial values are related by the matrix U 1(0) to the known values and they can be uniquely determined.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号