首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass ms and the color superconducting gap Δ. Increasing B and ms or decreasing Δ can stiffen the EOS which results in the larger maximum masses of neutron stars.  相似文献   

2.
We analyze the phase diagram of two-flavor quark matter under neutron star constraints for a nonlocal covariant quark model within the mean-field approximation. Applications to cold compact stars are discussed.  相似文献   

3.
We study the influence of nonlocality in the interaction on two spin-one pairing patterns of two-flavor quark matter: the anisotropic blue-color pairing besides the usual two-color superconducting matter (2SCb), in which red and green colors are paired, and the color-spin locking phase (CSL). The effect of nonlocality on the gaps is rather large and the pairings exhibit a strong dependence on the form factor of the interaction, especially in the low-density region. The application of these small spin-one condensates for compact stars is analyzed: the early onset of quark matter in the nonlocal models may help to stabilize hybrid star configurations. While the anisotropic blue-quark pairing does not survive a big asymmetry in flavor space as imposed by the charge neutrality condition, the CSL phase as a flavor independent pairing can be realized as neutral matter in compact star cores. However, smooth form factors and the mismatch between the flavor chemical potential in neutral matter make the effective gaps of the order of magnitude ≃10 keV, and a more systematic analysis is needed to decide whether such small gaps could be consistent with the cooling phenomenology. The text was submitted by the authors in English.  相似文献   

4.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

5.
We examine the present status of the theoretical calculations for the internal structure of neutron stars, and the connection with the microscopic properties of ultradense hadronic matter. We discuss the possibility to have quark deconfinement phase transition in the core of neutron stars, and we explore some of its astrophysical implications as the quark-deconfinement nova model for gamma-ray bursts.  相似文献   

6.
The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.  相似文献   

7.
K- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EXO0748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913+16. But if the recent inferred massive star among Terzan 5 with M>1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.  相似文献   

8.
A recent one flavor (zero temperature) quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on few parameters, one in the two flavor case, two in the three flavor case, and these parameters can be constrained by phenomenology. This equation of state is then applied to 1) the hadronquark transition in neutron stars and the determination of quark star stability, 2) the investigation of strange matter stability and possible strange star existence.  相似文献   

9.
Under extreme conditions of temperature and/or density, quarks and gluons are expected to undergo a deconfinement phase transition. While this is an ephemeral phenomenon at the ultra-relativistic heavy-ion collider (BNL-RHIC), quark matter may exist naturally in the dense interior of neutron stars. Here, we present an appraisal of the possible phase structure of dense quark matter inside neutron stars, and the likelihood of its existence given the current status of neutron star observations. We conclude that quark matter inside neutron stars cannot be dismissed as a possibility, although recent observational evidence rules out most soft equations of state. PACS 97.60.Jd; 26.60.+c  相似文献   

10.
《Nuclear Physics A》1998,637(3):451-465
We investigate the influence of medium effects on the structure of hybrid stars, i.e. neutron stars possessing a quark matter core. We found that medium effects in quark matter reduce the extent of a pure quark matter phase in the interior of a hybrid star significantly in favor of a mixed phase of quark and hadronic matter. Over a wide range of the strong coupling constant — which parameterizes the influence of medium effects — quark matter is able to exist at least in a mixed phase in the interior of neutron stars.  相似文献   

11.
Low temperature of the phase transition into the quark-gluon plasma correspond to low values of the bag model constant and to absolutely stable strange quark matter. Some of the observed pulsars are identified quite reliably as neutron stars. If strange matter is stable, the central density of these pulsars is to be smaller that critical density of the phase transition into the nonstrange quark matter. The nonstrange quark matter being formed turns to more stable strange matter on a weak interaction timescale converting neutron stars into strange stars. The requirement of stability of old and newly born neutron stars is used to constrain the bag model constant and the critical temperature of the phase transition into the quark-gluon plasma at zero chemical potential.  相似文献   

12.
We study the properties of two-flavor quark matter in the Dyson-Schwinger model and investigate the possible consequences for hybrid neutron stars,with particular regard to the two-solar-mass limit.We find that with some extreme values of the model parameters,the mass fraction of two-flavor quark matter in heavy neutron stars can be as high as 30 percent and the possible energy release during the conversion from nucleonic neutron stars to hybrid stars can reach 10~(52) erg.  相似文献   

13.
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.  相似文献   

14.
在致密星体内部极高密度条件下,强子物质可能发生退禁闭相变成为夸克物质,即强子-夸克相变。这种相变过程对于中子星的性质有着重要影响。考虑库仑能和表面能的影响,即有限尺度效应,相变过程中的混杂相包含了被称为pasta相的几何结构。强子-夸克共存相的平衡条件是通过求总能量的最小值得到的。采用相对论平均场(RMF)模型来描述强子物质相,采用Nambu-Jona-Lasinio(NJL)模型来描述夸克物质相。有限尺度效应一定程度上增加了中子星的最大质量,增加幅度取决于强子-夸克表面张力的大小。有限尺度效应能够降低混杂相的范围,其结果介于Gibbs结构和Maxwell结构的结果之间。研究结果表明,中子星中可能包含一个混杂相的核心部分,其大小受到表面张力等参数的影响。It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.  相似文献   

15.
16.
Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconlined quark phase. We include a perturbative QCD correction parameter αs in the CFL quark matter equation of states. It is shown that the CFL quark core with K^0 condensation forms in neutron star matter with the large value of αs. If the small value of αs is taken, hyperons suppress the CFL quark phase and the liP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter as or decreasing the bag constant B and the strange quark mass ms can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter αs.  相似文献   

17.
Gross properties of hybrid stars consisting of a core of strange matter surrounded by ordinary neutron matter are investigated. We discuss star models based on phenomenological equations of state from nuclear reactions including a phase transition between the hadronic phase and the quark-gluon plasma. For certain parameters, such equations of state support the existence of hybrid stars. The identification of such objects could provide detailed information on the properties of strange quark matter.  相似文献   

18.
Hybrid stars composed of a strange matter core surrounded by neutron matter are investigated. We apply star models based on phenomenological equations of state (EOS) from nuclear reactions including a phase transition between the hadronic phase and the quark gluon plasma. For specific equations of state hybrid stars might exist. While the nuclear part of the EOS has only a minor influence on the properties of hybrid stars, the EOS for the quark gluon phase has a crucial impact on the existence of such objects.  相似文献   

19.
In this paper, we consider dense stars with configurations expected from the SU(3)C×SU(2)W× U(1) standard model of strong and electroweak interactions. Following a recent suggestion that strange matter, a form of (uds) quark matter, may be the true ground state of hadronic matter, we investigate the prospect for the existence of dense stars consisting partially, or entirely, of strange matter by comparing the relative stability between neutron matter and strange matter. It is found that the restriction on the maximum star mass holds in all cases, including a pure strange star, a pure neutron star, and a neutron star with a quark core. It is also found that the choice of both the bag constantB and the strong coupling constant s has a decisive effect on the relative stability between strange matter and neutron matter. For currently accepted values of (B, s), anA= dense starcannot consist entirely,nor partially, of strange matter. Nevertheless, such conclusion may be subject to change if corrections ofO ( s 2 ) or other effects are taken into account. Finally, we use the framework of Tolman, Oppenheimer, and Volkoff to analyze two cases of boson stars: gluon stars and stars consisting of massive scalar particles (massive bosons). It is found that, in the case of gluon stars, the presence of the bag constant in the QCD vacuum yields results very similar to that found in quark stars. On the other hand, soliton stars consisting of massive bosons exist if there is some background pressure which plays the role similar to the bag constant for lowering the matter pressure. The stability problem for both gluon stars and soliton stars is briefly discussed.  相似文献   

20.
《Nuclear Physics A》1987,462(4):791-802
We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρtr≳7ρ0, where ρ0 is nuclear matter density is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρtr and still find it to be ∼7ρ0, we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M, where M is the solar mass. For such masses, the central (maximum) density is ρc<5ρ0. Transition to quark matter is certainly excluded for these densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号