首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of Np(IV), Zr, Nb, Cs, Ce(III) and Am(III) from nitric acid solutions containing oxalate and phosphate ions by solutions of 1-phenyl-3-methyl-4-benzoylpyrazolon-5 (PMBP) and tri-n-butyl phosphate (TBP) in benzene has been investigated. A solution 0.1M in respect to PMBP and 0.25M in respect to TBP was found to extract 99% of neptunium from aqueous solutions 1M in respect to H3PO4 and 0.5M in respect to HNO3. Under these conditions, the extraction of the other investigated elements does not exceed 0.1%. Based on this finding, a procedure was developed to determine243Am through its daughter product239Np in solutions containing large quantities of curium and its fission products. The sensitivity of the procedure is 1·10−7 mg of243Am in the sample. The243Am content is obtained by calculation from measurements of the γ-activity of the extracted239Np. The purification ratio of239Np is∼105 from Zr, Nb and Ru, ∼108 from Ce and Cm and >1012 from Cs.  相似文献   

2.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

3.
A combined radiochemical separation method has been developed that enables the simultaneous determination of 234U, 235U, 238U, 237Np, 239,240Pu, 238Pu, 241Am, 242Cm, and 244Cm in medium and low level liquid radioactive wastes. The main steps of the method are sample destruction, co-precipitation on iron(II)-hydroxide and calcium-oxalate, separation by extraction chromatography using supported dipentyl-pentyl phosphonate (UTEVA) and supported N,N-octylphenyl-di-i-butylcarbamoylmethyl phosphine oxide with tributyl phosphate (TRU), and α source preparation. The key parameter of the method is the adjustment of the oxidation states of the actinoides before adding the sample onto the UTEVA column. It has been determined that (NH4)2S2O8 can be used for oxidation state adjustment resulting sufficient chemical yields.  相似文献   

4.
An analytical procedure for the determination of activation products 238Pu, 241Pu, 239Pu/240Pu, 241Am, 237Np, and a fission product 90Sr in radioactive wastes is presented. Samples were decomposed using Fenton’s reaction. The separation was performed by anion-exchange chromatography, extraction chromatography, using TRU and Srresin, and precipitation techniques, followed by α-spectrometry and LSC counting. Tracer solutions and pure ion exchange resins were used to prepare artificial samples and trace nuclides during the analytical procedure. Some real samples of spent ion-exchange resins originating from our TRIGA Mark II research reactor were analyzed.  相似文献   

5.
Simultaneous electrodeposition of actinides   总被引:1,自引:0,他引:1  
A new system for simultaneous electrodeposition of U, Np, Pu, Am and Cm has been developed. The system consists of (NH4)2C2O4–H2SO4–HCl. The effects on recovery of pH, current density, interfering ions and the amount of added HCl have been studied. The optimum condition for simultaneous electrodeposition of actinides has been recommended. Under the recommended condition recoveries of U, Np, Pu, Am and Cm have been obtained by using232U,237Np,241Am,242Pu and244Cm. The counting sources prepared are uniform, adherent and suitable for -spectrometry.  相似文献   

6.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the DU origin (natural uranium enrichment or spent nuclear fuel reprocessing) it is necessary to check the presence of activation products (236U, 239+240Pu, 241Am, 237Np, etc.) in the ammunition.

Every transuranium element (TRU) was separated from the uranium matrix by extraction chromatography with microporous polyethylene (Icorene) supporting suitable stationary phases. Plutonium was separated by tri-n-octylamine (TNOA). 241Am was separated by TNOA and di(2ethylhexylphosphoric) acid (HDEHP). Neptunium also was separated by tri-n-octylamine using different conditions. After elution, the TRU elements were electroplated and counted by alpha spectrometry. The TRU decontamination factors from uranium were higher than 106.

The final chemical yields ranged from 50 to 70%. The detection limit was 1?Bq?kg?1 for 0.10?g ammunition; 239 + 240Pu and 241Am concentrations in two penetrators were 26 and 70?Bq?kg?1 and <1 and 3.4?Bq?kg?1, respectively; the 237Np concentration in one penetrator was 30.1?Bq?kg?1.

The presence of these anthropogenic radionuclides in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel, although because of their very low concentrations, the radiotoxicological effect is negligible.  相似文献   

7.
Extraction of actinides from aqueous nitric acid by three different heterocyclic dicarboxamides (2,6-pyridinedicarboxamide, 2,2′-bipyridine-6,6′-dicarboxamide and 1,10-phenanthroline-2,9-dicarboxamides) was studied. It was shown that all studied ligands extract actinides at different oxidation states (U(VI), Np(V), Pu(IV), Am(III), Cm(III)) from acidic solutions. All studied diamides extract Am(III) better than Cm(III). Et(pHexPh)ClPhen contains electron-withdrawing chlorine atoms at the positions 4 and 7 of the phenanthroline moiety (SFAm/Cm = 4–6) and possesses the highest separation factor Am(III)/Cm(III). The studied ligands possess high extraction ability to all actinides present in HLW and therefore they could be used for simultaneous extraction of actinides in the GANEX-type process.  相似文献   

8.
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement.The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.  相似文献   

9.
The separation of uranium and plutonium from oxalate supernatant, obtained after precipitating plutonium oxalate, containing ~10 g/l uranium and 30–100 mg/l plutonium in 3M HNO3 and 0.10–0.18M oxalic acid solution has been carried out. In one extraction step with 30% TBP in dodecane: ~92% of uranium and ~7% of Pu is extracted. The raffinate containing the remaining U and Pu is extracted with 0.2M CMPO+1.2 M TBP in dodecane and near complete extraction of both the metal ions is achieved. The metal ions are back extracted from organic phases using suitable stripping agents. The recovery of both the metal ions separately is >99%. The uranium species extracted into the TBP phase from the HNO3+oxalic acid medium was identified as UO2(NO3)2·2TBP.  相似文献   

10.
The determination of Am and Cm in a radiochemical procedure for the sequential analysis of Pu, Am, and Cm in soils was improved and optimized. This method uses only solvent extraction and extraction chromatography for the separation and cleaning of Am and Cm from soils up to 50 g sample weight. After leaching with 8M nitric acid, Pu is extracted with TOPO/cyclohexane. Am and Cm are extracted out of the remaining leaching solution at pH 1 with TOPO/cyclohexane, too. After backextraction with 2M nitric acid, Am and Cm are separated from traces of matrix elements, especially Fe, on a TRU-column, afterwards on a TEVA-column from lanthanides (TRU-resin and TEVA-resin of Eichrom Europe, SARL, Paris, France). The clean Am/Cm-fraction is electroplated and measured by alpha-spectrometry. The detection limit of this optimized procedure is 0.03 Bq/kg soil at a 95% confidence level.  相似文献   

11.
This paper describes the development and validation of analytical procedures for the separation and determination of90Sr,90Y,238Pu,239/240Pu,241Am,241Cm and243/244Cm in liquid effluents and environmental samples. The procedures use supported reagents for extraction chromatography (reversed phase partition chromatography) that enable the separation of the analytes from a large number of other radionuclides present.  相似文献   

12.
The analysis of actinides and radiostrontium in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes and strontium with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid separation method has been developed that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100–200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin®, TRU Resin® and DGA Resin® cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alphaspectrometry. Strontium is collected on Sr Resin® from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and 89/90Sr are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. Vacuum box cartridge technology with rapid flow rates is used to minimize sample preparation time.  相似文献   

13.
Assays of alpha- and beta-emitting radionuclides in swipe samples are often required to monitor the presence of removable surface contamination for radiological protection and control in nuclear facilities. Swipe analysis has also proven to be a very sensitive analytical technique to detect nuclear signatures for safeguard verification purposes. A new sequential method for the determination of actinide isotopes and radiostrontium in swipe samples, which utilizes a streamlined column separation with stacked anion and extraction chromatography resins, has been developed. To validate the separation procedure, spike and blank samples were prepared and analyzed by inductively coupled mass spectrometry (ICP-MS), alpha spectrometry and liquid scintillation (LS) counting. Low detection limits have been achieved for isotopic analysis of Pu (238Pu, 239Pu, 240Pu, 241Pu), U (234U, 235U, 238U), Am (241Am), Cm (242Cm, 243/244Cm) and Sr (90Sr) at ultra-trace concentration levels in swipe samples.  相似文献   

14.
A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of 237Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry. 238U can interfere with 239Pu measurement by ICP-MS as 238UH+ mass overlap and 237Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4?C6 h, and can also be used for emergency response. 239Pu, 242Pu and 237Np were measured by ICP-MS, while 236Pu, 238Pu, and 239Pu were measured by alpha spectrometry.  相似文献   

15.
A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products (90Sr,137Cs etc.) are 104–106. Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of -activity is >99% and the rejection of -counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste.  相似文献   

16.
A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.  相似文献   

17.
Curium was separated and recovered as an oxalate from a Cm–Pu mixed oxide which had been a 244Cm oxide sample prepared more than 40 years ago and the ratio of 244Cm to 240Pu was estimated to 0.2:0.8. Radiochemical analyses of the solution prepared by dissolving the Cm–Pu mixed oxide in nitric acid revealed that the oxide contained about 1 at% of 243Am impurity. To obtain high purity curium solution, plutonium and americium were removed from the solution by an anion exchange method and by chromatographic separation using tertiary pyridine resin embedded in silica beads with nitric acid/methanol mixed solution, respectively. Curium oxalate, a precursor compound of curium oxide, was prepared from the purified curium solution. 11.9 mg of Cm oxalate having some amounts of impurities, which are 243Am (5.4 at%) and 240Pu (0.3 at%) was obtained without Am removal procedure. Meanwhile, 12.0 mg of Cm oxalate (99.8 at% over actinides) was obtained with the procedure including Am removals. Both of the obtained Cm oxalate sample were supplied for the syntheses and measurements of the thermochemical properties of curium compounds.  相似文献   

18.
Summary A procedure is described to extend the current radiochemical method of seawater analysis for Pu and Am including Np. Short-lived 239Np tracer was prepared by separation from its 243Am parent. Irish Sea Water reference material (IAEA-381) containing known concentrations of 237Np, Pu isotopes and 241Am was used to test the procedure for small water volumes. Inductively-coupled plasma mass spectrometry (ICP-MS) was used in addition to alpha spectrometry for measurement of 237Np in the purified final Np fractions.  相似文献   

19.
The extraction behavior of Pu(III), Pu(IV), Np(IV) and Np(V) with di(chlorophenyl)-dithiophosphinic acid (DCPDTPA) in toluene from nitric acid solutions was studied systematically. In aqueous solution with high nitric acid concentration, the extraction capability (represented by distribution ratio D) for Pu and Np in different valences with DCPDTPA comes as D Np(IV) > D Pu(IV) > D Np(V) > D Pu(III). A new radiochemical procedure for Np/Pu separation based on DCPDTPA extraction was proposed and tested with simulated samples. The recoveries of Np and Pu are as high as 80 % after the whole separation procedure, with the decontamination factor of trivalent lanthanide fission product element (e.g. Eu) greater than 1.5 × 104. The decontamination factor of Pu–Np is 2.0 × 103, while the decontamination factor of Np–Pu is greater than 4.8 × 103 after additional purification.  相似文献   

20.
A study for separation and sequential recovery of uranium and plutonium from nitric acid solutions by extraction chromatography using tributyl phosphate (TBP)/Amberlite XAD7 as stationary phase is presented. Distribution ratios of actinides, lanthanides and fission products were obtained. The column capacity was investigated and actinides retention conditions were established. Finally, U-Pu sequential separation was studied as well as the U and Pu recovery yields from nitric solutions containing Am/fission products were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号