首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drag Reduction of a Circular Cylinder Using an Upstream Rod   总被引:3,自引:0,他引:3  
Experimental studies on the drag reduction of the circular cylinder were conducted by pressure measurement at a Reynolds number of 82 000 (based on the cylinder diameter). A rod was placed upstream of and parallel to the cylinder to control the flow around the cylinder. The upstream rod can reduce the resultant force of the cylinder at various spacing between the rod and the cylinder for α < 5(α defined as the staggered angle of the rod and the cylinder). For α > 10, the resultant force coefficient has a large value, so the upstream rod cannot reduce the force on the cylinder any more. For α = 0 and d/D = 0.5 (where d and D are the diameter of the rod and the cylinder, respectively), the maximum drag of the cylinder reduces to 2.34% that of the single cylinder. The mechanism of the drag reduction of the cylinder with an upstream rod in tandem was presented by estimating the local contributions to the drag reduction of the pressure variation. In the staggered arrangement, the flow structures have five flow patterns (they are the cavity mode, the wake splitting mode, the wake merge mode, the weak boundary layer interaction mode and the negligible interaction mode) according to the pressure distribution and the hydrogen bubble flow visualization. The half plane upwind of the cylinder can be divided to four regions, from which one can easily estimates the force acting on the circular cylinder with an upstream rod in staggered arrangement.  相似文献   

2.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

3.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Wind tunnel experiments were conducted to measure the vortex shedding frequencies for two circular cylinders of finite height arranged in a staggered configuration. The cylinders were mounted normal to a ground plane and were partially immersed in a flat-plate turbulent boundary layer. The Reynolds number based on the cylinder diameter was ReD=2.4×104, the cylinder aspect ratio was AR=9, the boundary layer thickness relative to the cylinder height was δ/H=0.4, the centre-to-centre pitch ratio was varied from P/D=1.125 to 5, and the incidence angle was incremented in small steps from α=0° to 90°. The Strouhal numbers were obtained behind the upstream and downstream cylinders using hot-wire anemometry. From the behaviour of the Strouhal number data obtained at the mid-height position, the staggered configuration could be broadly classified by the pitch ratio as closely spaced (P/D<1.5), moderately spaced (1.5?P/D?3), or widely spaced (P/D>3). The closely spaced staggered finite cylinders were characterized by the same Strouhal number measured behind both cylinders, an indication of single bluff-body behaviour. Moderately spaced staggered finite cylinders were characterized by two Strouhal numbers at most incidence angles. Widely spaced staggered cylinders were characterized by a single Strouhal number for both cylinders, indicative of synchronized vortex shedding from both cylinders at all incidence angles. For selected staggered configurations representative of closely spaced, moderately spaced, or widely spaced behaviour, Strouhal number measurements were also made along the vertical lengths of the cylinders, from the ground plane to the free end. The power spectra showed that for certain cylinder arrangements, because of the influences of the cylinder–wall junction and free-end flow fields, the Strouhal numbers and flow patterns change along the cylinder.  相似文献   

5.
Mean and fluctuating surface pressure data are presented for a square cylinder of side length D placed near a solid wall at Re D=18,900. One oncoming boundary layer thickness, d=0.5 D was used. Measurements were made for cylinder to wall gap heights, S, from S/ D=0.07 to 1.6. Four gap-dependent flow regimes were found. For S/ D>0.9, the flow and the vortex shedding strength are similar to the no-wall case. Below the critical gap height of 0.3 D, periodic activity is fully suppressed in the near wake region. In between, for 0.3< S/ D<0.9, the wall exerts a greater influence on the flow. For 0.6< S/ D<0.9, the mean drag and the strength of the shed vortices decrease as the gap is reduced, while the mean lift towards the wall increases. Evidence is presented that for S/ D>0.6 the influence of the viscous wall flow in the gap is not dominant and that, consequently, inviscid flow theory can describe changes in the mean lift as S/ D decreases. For 0.3< S/ D<0.6, the flow reattaches intermittently on the bottom face of the cylinder and viscous effects become important. Below the gap height of 0.4 D, periodic activity cannot be observed on the cylinder.  相似文献   

6.
The flow past two identical circular cylinders in side-by-side arrangements at right and oblique attack angles is numerically investigated by solving the three-dimensional Navier–Stokes equations using the Petrov–Galerkin finite element method. The study is focused on the effect of flow attack angle and gap ratio between the two cylinders on the vortex shedding flow and the hydrodynamic forces of the cylinders. For an oblique flow attack angle, the Reynolds number based on the velocity component perpendicular to the cylinder span is defined as the normal Reynolds number ReN and that based on the total velocity is defined as the total Reynolds number ReT. Simulations are conducted for two Reynolds numbers of ReN=500 and ReT=500, two flow attack angles of α=0° and 45° and four gap ratios of G/D=0.5, 1, 3 and 5. The biased gap flow for G/D=0.5 and 1 and the flip-flopping bistable gap flow for G/D=1 are observed for both α=0° and 45°. For a constant normal Reynolds number of ReN=500, the mean drag and lift coefficients at α=0° are very close to those at α=45°. The difference between the root mean square (RMS) lift coefficient at α=0° and that at α=45° is about 20% for large gap ratios of 3 and 5. From small gap ratios of 0.5 and 1, the RMS lift coefficients at α=0° and 45° are similar to each other. The present simulations show that the agreement in the force coefficients between the 0° and 45° flow attack angles for a constant normal Reynolds number is better than that for a constant total Reynolds number. This indicates that the normal Reynolds number should be used in the implementation of the independence principle (i.e., the independence of the force coefficients on the flow attack angle). The effect of Reynolds number on the bistable gap flow is investigated by simulating the flow for ReN=100–600, α=0° and 45° and G/D=1. Flow for G/D=1 is found to be two-dimensional at ReN=100 and weak three-dimensional at ReN=200. While well defined biased flow can be identified for ReN=300–600, the gap flow for ReN=100 and 200 changes its biased direction too frequently to allow stable biased flow to develop.  相似文献   

7.
The development of a steady lift force on a stranded cable, which is yawed with respect to a flow, is a unique characteristic of a cable when compared to a circular cylinder. Comparisons of lift and normal drag coefficients and wake characteristics were made between stranded cable models and the cylinder. These were based upon surface pressure and hot-wire measurements and flow visualization studies conducted in a low speed wind tunnel on rigid cables and cylinders. The models were yawed to four different yaw angles and tested within the Reynolds number range of 5,000 and 50,000. Pressure profiles for the yawed cables indicated that the lift force is directed towards the side where the primary strands are more nearly aligned with the flow. The pressure profiles also indicated that the lift force is generated by asymmetric separation. The small scale irregularities associated with wires within individual strands also appeared to have an effect on the cable's lift and drag characteristics. Results show that cables have significantly different shedding characteristics and near-wake shear layer structure when compared to the circular cylinder. For the flow regime tested, the Strouhal number showed no dependence on Reynolds number nor spanwise position along the cable.List of symbols C dn normal drag coefficient - C l lift coefficient - C p pressure coefficient - D actual diameter, based on circumscribing circle for the cable - f v shedding frequency - L/D length to actual diameter ratio - ppd peak-to-peak distance, unit span - Re Reynolds number based on actual diameter - S Strouhal number, - V free stream velocity - cable angle - azimuthal angle  相似文献   

8.
This paper describes a numerical study of the two‐dimensional and three‐dimensional unsteady flow over two square cylinders arranged in an in‐line configuration for Reynolds numbers from 40 to 1000 and a gap spacing of 4D, where D is the cross‐sectional dimension of the cylinders. The effect of the cylinder spacing, in the range G = 0.3D to 12D, was also studied for selected Reynolds numbers, that is, Re = 130, 150 and 500. An incompressible finite volume code with a collocated grid arrangement was employed to carry out the flow simulations. Instantaneous and time‐averaged and spanwise‐averaged vorticity, pressure, and streamlines are computed and compared for different Reynolds numbers and gap spacings. The time averaged global quantities such as the Strouhal number, the mean and the RMS values of the drag force, the base suction pressure, the lift force and the pressure coefficient are also calculated and compared with the results of a single cylinder. Three major regimes are distinguished according to the normalized gap spacing between cylinders, that is, the single slender‐body regime (G < 0.5), the reattach regime (G < 4) and co‐shedding or binary vortex regime (G ≥4). Hysteresis with different vortex patterns is observed in a certain range of the gap spacings and also for the onset of the vortex shedding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional–integral–derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.  相似文献   

10.
The shadow and interferometric methods and the laser probe method are used to investigate crossflow past a cylinder on the free-stream Mach number interval M a =0.5–1.2 for subcritical Reynolds numbers Re d and various initial steam states. Detailed pressure distributions are obtained and the pressure fluctuations on the cylinder surface are measured. The dependence of the Strouhal number on the velocity and thermodynamic parameters of the flow are determined. In single-phase steam flow past a cylinder the greatest fluctuations occur in the separation zone in regimes corresponding to transonic drag crisis. It is shown that spontaneous condensation in the turbulent wake and local supersonic zones may cause an increase in the periodic pressure fluctuations in the separation zone, the maximum increase in the fluctuations being noted when the critical pressure ratio is reached at the rear of the cylinder. The initial wetness of the steam has the greatest effect on the periodic separation characteristics at subsonic flow velocities, and in the case of supersonic flow leads to a substantial increase in the level of the low-frequency pressure fluctuations at the front of the cylinder.(deceased)Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 118–138, November–December, 1994.  相似文献   

11.
Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p  ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.  相似文献   

12.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

13.
Four riblet bends were tested to investigate the effects of riblets on pipe flows including the secondary flow on the Reynolds numbers; Re D =6×103–4×104. The pressure gradients on the smooth pipe downstream from the riblet bends were measured, and also the pressure losses of the bends only were measured. All riblet bends reduced the pressure gradient on the smooth pipe downstream from them, which means a drag reduction. Two of the riblet bends showed the maximum drag reduction of about 4 percent at Re D = 6500; this reduction rate was significant considering the uncertainty of the present experiments. Since the pressure losses of these two riblet bends were almost identical to that of the smooth bend at Re D = 6500, they could cause a net drag reduction of about 4 percent on the piping system including these bends at that Reynolds number. Furthermore, the velocity profiles measured by LDV indicated that the secondary flow becomes weaker downstream from the riblet bends when a drag reduction is recognized there.Nomenclature D pipe diameter - D 0 the distance from the valley to the valley passing through the pipe center - H height of groove - P nondimensional static pressure (p/it/(U 0 2 ):p is gauge pressure) - dP/dX nondimensional pressure gradient - Rc curvature of bend - Re D Reynolds number based on bulk velocity and pipe diameter - s spacing of groove - U mean streamwise velocity along the horizontal diameter - U 0 bulk velocity - V mean vertical velocity along the horizontal diameter - x streamwise direction along the pipe axis (see Fig. 1) - X nondimensionalx (=x/D) - y radial direction in the horizontal plane which is perpendicular to the plane including the bend (see Fig. 1) - yUV swirl intensity (nondimensional swirl intensity:yUV/(DU 0 2 ))  相似文献   

14.
This paper presents an experimental study of the flow around four circular cylinders arranged in a square configuration. The Reynolds number was fixed at Re=8000, the pitch-to-diameter ratio between adjacent cylinders was varied from P/D=2 to 5 and the incidence angle was changed from α=0° (in-line square configuration) to 45° (diamond configuration) at an interval of 7.5°. The flow field was measured using digital Particle Image Velocimetry (PIV) to examine the vortex shedding characteristics of the cylinders, together with direct measurement of fluid dynamic forces (lift and drag) on each cylinder using a piezoelectric load cell. Depending on the pitch ratio, the flow could be broadly classified as shielding regime (P/D≤2), shear layer reattachment regime (2.5≤P/D≤3.5) and vortex impinging regime (P/D≥4). However, this classification is valid only in the case that the cylinder array is arranged nearly in-line with the free stream (α≈0°), because the flow is also sensitive to α. As α increases from 0° to 45°, each cylinder experiences a transition of vortex shedding pattern from a one-frequency mode to a two-frequency mode. The flow interference among the cylinders is complicated, which could be non-synchronous, quasi-periodic or synchronized with a definite phase relationship with other cylinders depending on the combined value of α and P/D. The change in vortex pattern is also reflected by some integral parameters of the flow such as force coefficients, power spectra and Strouhal numbers.  相似文献   

15.
The flow interference between two circular cylinders, one stationary and the other free to oscillate in the transverse direction, are studied numerically at Re=150. The incompressible Navier–Stokes equation in two space dimensions, an assumption that is expected to be valid at the considered Re, is solved by the characteristic-based-split (CBS) finite element method using the T4/C3 MINI triangular element. The center-to-center spacing between the two cylinders is fixed at 4D, where D is the cylinder diameter. The angle of incident flow, α, with respect to the line through the two cylinder centers, varies within the range from α=0° to 90°. For the elastically mounted cylinder, the reduced mass considered is Mr=2.0; the structural damping coefficient is assigned to be zero, which encourages high amplitude oscillations. For each α, the computations are conducted for a wide range of reduced velocities, Ur. The flow interference is examined by scrutinizing (i) the frequency characteristics of the vortex shedding and oscillation; (ii) the dynamic response of the oscillating cylinder, including the amplitude of displacement, the drag and lift force characteristics and the phase relationship between the lift and the displacement series; and (iii) the flow response in terms of the instantaneous vorticity field. It was found that the flow interference type is significantly affected by the angle of the incident flow. As the cylinder is oscillated outside of the region of the wake behind the stationary cylinder (α≥30°), it behaves similarly to its isolated counterpart. In contrast, if the cylinder is partially or entirely submerged within the upstream wake (α<30°), then both the flow and body responses are substantially modified due to the vigorous interaction between the upstream wake and the oscillating cylinder; the response therefore belongs to the wake-induced regime. The Ur range associated with the higher amplitude response is significantly shifted toward a higher Ur. The maximum vibration amplitude builds up to a significantly higher level, even increasing the Ur far beyond the resonance regime. In general, the wake flow associated with the wake-induced vibration (WIV) regime appears to be more unperiodic than does that corresponding to the vortex-induced oscillation regime. It is also revealed that both the vortex-cylinder and the shear layer-cylinder interaction mechanisms are responsible for the characteristics of the responses of oscillating cylinder. The larger momentum required for the higher oscillation amplitude is obtained from the duration of the energy transfer from the fluid to the cylinder, which is ascribed to the phase lag between the lift force and the cylinder displacement.  相似文献   

16.
Two dimensional flow over a circular cylinder with an upstream control rod of same diameter is simulated in unbound condition and in wall bounded conditions. The cylinders are placed at various heights from the wall and the inter-distance between cylinders is also varied. The control rod is subjected to different rotation rates. It is found that, in unbound condition, rotating the control rod decreases the critical pitch length (S/Dcr) and increases the drag and Strouhal number of the main cylinder. In presence of plane wall, the shielding provided by the separated shear layers from the control rod in cavity regime is deteriorated due to deflection of shear layers which results in higher drag and large fluctuation of lift coefficient. However, in wake impingement regime, the binary vortices from the control rod are weakened due to diffusion of vorticity and hence, the main cylinder experiences a lower drag and small lift fluctuations than that of unbound condition. The critical height of vortex suppression (H/Dcr) is higher in cavity regime than that of wake impingement regime due to the single extended-bluff body like configuration. The rotation of control rod energizes the wall boundary layer and increases the critical height of vortex suppression. Increasing the rotational rate of control rod decreases the drag force and reduces the amplitude of lift fluctuation. Analysis of the wall shear stress distribution reveals that it suffers a sudden drop at moderate height where the normal Karman vortex shedding changes to irregular shedding consisting of single row of negative vortices. Modal structures obtained from dynamic mode decomposition (DMD) reveal that the flow structures behind the main cylinder are suppressed due to wall and the flow is dominated by the wake of control rod.  相似文献   

17.
Cavities and other surface cut-outs are present on aircraft in numerous forms, from cargo bays and landing gear housing to rivet depressions and panel handles. Although these surface imperfections make a significant contribution to the overall drag on an aircraft, relatively little is known about the flow mechanisms associated with cavities, particularly those which have a strongly three-dimensional geometry. The present work is a wind tunnel investigation of the drag forces and flow regimes associated with cavities having a 2:1 rectangular planform geometry. The effects of both the cavity depth and the flow incidence angle have been examined in terms of the overall cavity drag increment and the mean surface pressure distributions. The drag forces have been determined from both integrated pressures and direct force balance measurements. For the model normal to the flow direction the flow within the cavity was remarkably symmetrical in all the configurations examined. In most cases the cavity flow is dominated by a single large eddy. However, for cavities yawed to other incidence angles there is considerable flow asymmetry, with strong vorticity shedding and high drag in some cases, notably with depth/narrowest width ratio of 0.4–0.5 at 45–60° incidence. The present data correspond well with established results and extend the scope of information available for design purposes and for the development of numerical models.Nomenclature A p planform area of model - C D pressure drag coefficient (F D /(A p · q)) - C D drag coefficient increase due to cavity (C D – cf) - c f local skin friction coefficient - C L pressure lift coefficient (F L /(A p · q)) - C p mean surface pressure coefficient (P – P s )/q) - F D drag force - F L lift force - h depth - L longest planform dimension of model - P surface pressure on model - P s freestream static pressure - P t freestream total pressure - q freestream dynamic pressure (P t – Ps) - Re Reynolds number (U R · W/v) - U R freestream velocity - W narrowest planform dimension of model - Z vertical cartesian coordinate - incidence angle - kinematic viscosity  相似文献   

18.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

19.
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Measurements of the mean drag force and vortex shedding frequency were made at Re=7.4×104 for square prisms of aspect ratios AR=9, 7, 5 and 3. Measurements of the mean wake velocity field were made with a seven-hole pressure probe at Re=3.7×104 for square prisms of AR=9 and 5. The relative thickness of the boundary layer on the ground plane was δ/D=1.5–1.6 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths ranged from L/D=1 to 7. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR≤5) when long splitter plates (of L/D≥5) were used. In contrast, a splitter plate of length L/D=3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression. The effect of the splitter plate on the mean wake was to narrow the wake width close to the ground plane, stretch and weaken the streamwise vortex structures, and increase the lateral entrainment of ambient fluid towards the wake centreline. The splitter plate has little effect on the mean downwash. Long splitter plates resulted in the formation of additional streamwise vortex structures in the upper part of the wake.  相似文献   

20.
Air-flow around a circular cylinder placed above a free surface and liquid flow under the free surface were investigated experimentally in a wind/wave tunnel. The cylinder spanned the tunnel test-section and was oriented normal to the freestream direction. The main objective of this study was to investigate the interaction of the cylinder wake with the free surface. The flow structure was analyzed for various gap widths, H, between the cylinder and the free surface using a digital particle image velocimetry (PIV) system with a spatial resolution of 2048×2048 pixels. The Reynolds number based on the cylinder diameter was 3.3×103. For each experimental condition, 400 instantaneous velocity fields were measured and ensemble-averaged to obtain spatial distributions of the mean velocity and turbulence statistics. The results showed that the cylinder near-wake inclined upward due to the influence of the free surface elevation. Vortices were shed, even at a small gap ratio of H/D=0.25, where D is the cylinder diameter. Strong jet-like flow appeared in the gap beneath the cylinder. At a gap ratio of H/D=0.50, the jet flow exhibited a quasi-periodic vibration with a period of 2–3 s. The free surface deformation was caused by the pressure difference in the air-flow immediately above it. As the gap ratio increased, the inclination angle of the wake and the height of the free surface elevation decreased gradually. The liquid flow under the free surface followed a convective flow motion, and the range of the convection depended on the gap width between the cylinder and the free surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号