首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A convenient and effective method for the preparation of perfluoroalkylated ethenes is described. First, the free radical addition of perfluoroalkyl iodides to trimethylvinylsilane in the presence of AIBN gave iodoethylsilane intermediates (F(CF(2))(n)()CH(2)CHISiMe(3), n = 4 (1), 6 (2), 8 (3), 10 (4); 94-99%). Then an unusual dehydrohalogenation-desilylation reaction was effected by tetrabutylammonium fluoride, and finally the product isolation (F(CF(2))(n)()CH=CH(2) (5-8), 62-87%) was facilitated using a fluorous phase separation technique. This novel approach can also be applied to adjust short C(2) hydrocarbon units to functionalized fluorinated segments (e.g., HOCH(2)(CF(2))(8)CH=CH(2) (11), 71%). All structures were verified by state-of-the-art multinuclear one- and two-dimensional NMR experiments involving both homo- ((19)F-(19)F) and heteronuclear ((1)H-(13)C, (19)F-(13)C) correlations based on the GMQFCOPS and inverse (1)H and/or (19)F detected GHSQC, GHMQC sequences with broad-band adiabatic (13)C decoupling.  相似文献   

2.
We propose the 13C-detecting 1D DEPT long-range C-C relay to detect super long-range H-C connectivity via four bonds (1H-13C-X-X-13C, X represents 12C or heteronuclear). It is derived from the DEPT C-C relay which detects the H-C correlations via two bonds (1H-13C-13C) by setting the delays for J(CC) in the C-C relay sequence to the (LR)J(CC). This sequence gives correlation signals split by small (LR)J(CC), which seriously suffers from residual center signal. The unwanted signal is due to long-range C-H couplings ((LR)J(CH)). The expected relayed magnetization transfer 1J(CH) --> (LR)J(CC) occurs in the 1H-13C-X-(X)-13C isotopomer, whereas the unwanted signal of (LR)J(CH) comes from 1H-12C-(X)-13C isotopomers, whose population is 100 times larger than that of the 1H-13C-X-(X)-13C isotopomer. The large dispersive line of this unwanted center signal would be a fatal problem in the case of detecting small (LR)J(CC) couplings. This central signal could be removed by an insertion of BIRD pulse or X-filter. DEPT spectrum editing solved a signal overlapping problem and enabled accurate determination of particular (LR)J(CC) values. We demonstrate here the examples of structure determination using connectivity between 1H and 13C via four bonds, and the application of long-range C-C coupling constants to discrimination of stereochemical assignments.  相似文献   

3.
The title compound [2,6-Mes(2)C(2)H(3)](2)Ga(+)Li[Al(OCH(CF(3))(2))(4)](2)(-), 1, containing a linear two-coordinate gallium cation, has been obtained by metathesis reaction of [2,6-Mes(2)C(2)H(3)](2)GaCl with 2 equiv of Li[Al(OCH(CF(3))(2))(4)] in C(6)H(5)Cl solution at room temperature. Compound 1 has been characterized by (1)H, (13)C((1)H), (19)F, and (27)Al NMR spectroscopy and X-ray crystallography. Compound 1 consists of isolated [2,6-Mes(2)C(6)H(3)](2)Ga(+) cations and Li[Al(OCH(CF(3))(2))(4)](2)(-) anions. The C-Ga-C angle is 175.69(7) degrees, and the Ga-C distances are 1.9130(14) and 1.9145(16) A. The title compound is remarkably stable, is only a weak Lewis acid, and polymerizes cyclohexene oxide.  相似文献   

4.
The rate coefficient of the OH reaction with the perfluoroaldehydes C(3)F(7)CHO and C(4)F(9)CHO have been determined in the temperature range 252-373 K using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) method: k(C(3)F(7)CHO+OH) = (2.0 +/- 0.6) x 10(-12) exp[-(369 +/- 90)/T] and k(C(4)F(9)CHO+OH) = (2.0 +/- 0.5) x 10(-12) exp[-(356 +/- 70)/T] cm(3) molecule(-1) s(-1), corresponding to (5.8 +/- 0.6) x 10(-13) and (6.1 +/- 0.5) x 10(-13) cm(3) molecule(-1) s(-1), respectively, at 298 K. The UV absorption cross sections of these two aldehydes and CF(3)(CF(2))(5)CH(2)CHO have been measured over the range 230-390 nm at 298 K and also at 328 K for CF(3)(CF(2))(5)CH(2)CHO. The obtained results for C(3)F(7)CHO and C(4)F(9)CHO are in good agreement with two recent determinations but the maximum value of the absorption cross section for CF(3)(CF(2))(5)CH(2)CHO is over a factor of two lower than the single one recently published. The photolysis rates of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO have been measured under sunlight conditions in the EUPHORE simulation chamber in Valencia (Spain) at the beginning of June. The photolysis rates were, respectively, J(obs) = (1.3 +/- 0.6) x 10(-5), (1.9 +/- 0.8) x 10(-5) and (0.6 +/- 0.3) x 10(-5) s(-1). From the J(obs) measurements and calculated photolysis rate J(calc), assuming a quantum yield of unity across the atmospheric range of absorption of the aldehydes, quantum yields J(obs)/J(calc) = (0.023 +/- 0.012), (0.029 +/- 0.015) and (0.046 +/- 0.028) were derived for the photodissociation of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO, respectively. The atmospheric implication of the data obtained in this work is discussed. The main conclusion is that the major atmospheric removal pathway for fluoroaldehydes will be photolysis, which under low NO(x) conditions, may be a source of fluorinated carboxylic acids in the troposphere.  相似文献   

5.
Azidotris(trifluoromethyl)germane, (CF(3))(3)GeN(3), was prepared from activated silver azide and iodotris(trifluoromethyl)germane in a neat reaction or in dichloromethane or toluene solution, respectively. (CF(3))(3)GeN(3) is a colorless, highly volatile liquid (mp ca. -85 degrees C) which was identified from MS data. The new compound was characterized by multinuclear solution NMR ((13)C, (14)N, (19)F) and gas-phase IR spectroscopy. The structure and the vibrational spectrum of (CF(3))(3)GeN(3) were computed employing density functional theory calculations (DFT) at the self-consistent level with the nonlocal exchange functional of Becke (B) and the nonlocal correlation functional of Lee, Yang, and Parr (B-LYP). The results of the DFT calculation and experimentally obtained vibrational spectra are in good agreement. The DFT computation at the correlated level (B-LYP) predicts the vibrational modes reasonably well, and no scaling was required.  相似文献   

6.
The first rotational spectrum of a dinuclear complex, MnRe(CO)(10), has been obtained using a high-resolution pulsed beam microwave spectrometer. Sixty-four hyperfine components of the J=11-->J(')=12 and J=12-->J(')=13 rotational transitions were measured for two rhenium isotopomers. The B values obtained from the experiment are B=200.36871(18) MHz for the (187)Re isotopomer and B=200.5561(10) MHz for the (185)Re isotopomer. The measured rotational constants are in reasonably good agreement with the B values calculated from the x-ray diffraction structural data, and from theoretical calculations. The gas-phase Mn-Re bond distance is approximately 2.99 A, and the calculated value is only slightly longer. The experimental quadrupole coupling constant for the manganese atom is eQq(aa) ((55)Mn)=-16.52(5) MHz, and the corresponding quadrupole coupling constants for the two rhenium isotopomers are eQq(aa) ((187)Re)=370.4(4) MHz and eQq(aa) ((185)Re)=390.9(6) MHz. The quadrupole coupling constants were also determined from a variety of theoretical calculations, with very large Gaussian orbital bases. The best estimates, at a nonrelativistic level, are eQq(aa) ((55)Mn)=0.68 MHz and eQq(aa) ((187)Re)=327.6 MHz with a 874 GTO basis set, but the results are very basis set dependent, especially the sign of the Mn quadrupole coupling. Very slight bending of angles MnC(eq)O(eq) and ReC(eq)O(eq) angles is found in the calculations.  相似文献   

7.
A series of new Ru(II) arene phosphine complexes derived from Binap have been prepared. Specifically, reaction of Ru(OAc)(2)(Binap) with 3,5-(CF(3))(2)C(6)H(3))(4)B (BArF).H(OEt(2))(2), is shown to afford new mono- and dinuclear Ru(II) hydroxyphosphine pi-arene complexes via a series of P-C bond cleavage reactions. The dinuclear Ru(II) pi-arene complexes contain bridging P(O)(OH)(2) ligands. Crystal structures of five new complexes are reported and suggest an eta(4)-arene rather than an eta(6)-arene coordination mode. However, in solution, their (13)C NMR data are more consistent with a strongly distorted eta(6)-coordination mode. PGSE (1)H and (19)F diffusion measurements on the dinuclear complexes suggest hydrogen bonding of the triflate anion and ion-pairing of the BArF(-) anion.  相似文献   

8.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

9.
Reaction of a mixture of insoluble higher fullerenes with CF3I at 500 degrees C produced a single abundant isomer of C74(CF3)12, C76(CF3)12, and C80(CF3)12, two abundant isomers of C78(CF3)12 and C82(CF3)12, and an indeterminant number of isomers of C84(CF3)12. Using a combination of 19F NMR spectroscopy, DFT calculations, and the structures and spectra of previously reported fullerene(CF3)n compounds, the most-probable structures of six of the seven isolated compounds were determined to be specific isomers of C2-(C74-D3h)(CF3)12, Cs-(C76-Td(2))(CF3)12), C2-(C78-D3h(5))(CF3)12), Cs-(C80-C2v(5))(CF3)12), C2-(C82-C2(5))(CF3)12), and C2-(C82-C2(3))(CF3)12) containing ribbons and/or loops of edge-sharing para-C6(CF3)2 hexagons. The seventh isolated compound is a C1 isomer of C78(CF3)12 containing two such ribbons. This set of compounds represents only the second reported isolable compound with the hollow C74-D3h cage and the first experimental evidence for the existence of the hollow fullerenes C76-Td(2), C78-D3h(5), C80-C2v(5), and C82-C2(5) in arc-discharge soots.  相似文献   

10.
A family of highly stable (poly)perfluoroalkylated metallic nitride cluster fullerenes was prepared in high-temperature reactions and characterized by spectroscopic (MS, (19)F NMR, UV-vis/NIR, ESR), structural and electrochemical methods. For two new compounds, Sc(3)N@C(80)(CF(3))(10) and Sc(3)N@C(80)(CF(3))(12,) single crystal X-ray structures are determined. Addition pattern guidelines for endohedral fullerene derivatives with bulky functional groups are formulated as a result of experimental ((19)F NMR spectroscopy and single crystal X-ray diffraction) studies and exhaustive quantum chemical calculations of the structures of Sc(3)N@C(80)(CF(3))(n) (n = 2-16). Electrochemical studies revealed that Sc(3)N@C(80)(CF(3))(n) derivatives are easier to reduce than Sc(3)N@C(80), the shift of E(1/2) potentials ranging from +0.11 V (n = 2) to +0.42 V (n = 10). Stable radical anions of Sc(3)N@C(80)(CF(3))(n) were generated in solution and characterized by ESR spectroscopy, revealing their (45)Sc hyperfine structure. Facile further functionalizations via cycloadditions or radical additions were achieved for trifluoromethylated Sc(3)N@C(80) making them attractive versatile platforms for the design of molecular and supramolecular materials of fundamental and practical importance.  相似文献   

11.
Palladium fluorophenyl complexes with different pincer ligands Pd(Ar)[2,6-(tBu(2)PCH(2))(2)C(6)H(3)] (13), Pd(Ar)[2,6-(tBu(2)PO)(2)C(6)H(3)] (14), Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))] (15), and Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Ru(C(5)H(5))] (16) were synthesized by the reaction of LiAr (Ar = C(6)H(4)F-4) with the respective trifluoroacetate palladium pincer complexes 9-12. The molecular structures of 14 and 16 were determined by an X-ray crystallographic method. Complexes 13-16 and {Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))]}PF(6) (17) were studied by multinuclear NMR spectroscopy and cyclic voltammetry. On the basis of (19)F NMR chemical shifts and (1)J((13)C-(19)F) coupling constants, as well as Pd(II)/Pd(IV) oxidation potentials, electronic characteristics of the corresponding pincer ligands were elucidated.  相似文献   

12.
Solution conformations about the metal-carbon bond of the secondary fluoroalkyl ligands in iridium complexes [IrCp(PMe(3))(R(F))X] [Cp* = C(5)Me(5); R(F) = CF(CF(3))(2), X = I (1), CH(3) (2); R(F) = CF(CF(3))(CF(2)CF(3)), X = I (4), CH(3) (5)] have been determined using (19)F[(1)H] HOESY techniques. The molecules adopt the staggered conformation with the tertiary fluorine in the more hindered sector between the PMe(3) and X ligands, with CF(3) (and CF(2)CF(3)) substituents lying in the less hindered regions between PMe(3) and Cp or X and Cp. In molecules containing the CF(CF(3))(2) ligand, these conformations are identical to those adopted in the solid state. For compound 4, containing the CF(CF(3))(CF(2)CF(3)) ligand, two diastereomers are observed in solution. Solution conformations and relative stereocenter configuration assignments have been obtained using (19)F[(1)H] HOESY and correlated with the X-ray structure for the major diastereomer of 4, which has the (S(Ir), S(C)) or (R(Ir), R(C)) configuration. Relative stereocenter configurations of analogue 5, for which no suitable crystals could be obtained, were assigned using (19)F[(1)H] HOESY and proved to be different from 4, with 5 preferring the (S(Ir), R(C)) or (R(Ir), S(C)) configuration.  相似文献   

13.
The first quaternary salts of pyridine (2), N-methyl imidazole (3), N-propyl triazole (4), and pyridazine (5) that contain the pentafluorosulfanyl (SF(5)) group were prepared and characterized. Neat reactions of the aromatic nitrogen compounds with SF(5)(CF(2))(n)(CH(2))(m)I (n = 2 or 4, m = 2 or 4) gave quaternary iodides 6a-c, 7a-c, 8a, and 9a,b, which were metathesized with LiN(SO(2)CF(3))(2) to form the bis(trifluoromethylsulfonyl)amides 10a-c, 11a-c, 12a, and 13a,b, in high yields. With the exception of the pyridine bis(trifluoromethylsulfonyl)amide salts, the compounds melted or exhibited a T(g) at <0 degrees C. The methylimidazolium, pyridinium, and pyridazinium salts exhibited densities of approximately 2 g/cm(3). Particularly striking was the density of CF(3)(CF(2))(5)(CH(2))(2)-pyridazinium N(CF(3)SO(2))(2) measured at 2.13 g/cm(3); however, an atypically high density for the 1-CF(3)(CF(2))(5)(CH(2))(2)-3-methyl imidazolium amide (14) was also observed at 1.77 g/cm(3). All quaternary salts were characterized via IR, (19)F, (1)H, and (13)C NMR spectra and elemental analyses.  相似文献   

14.
Adding 1% of the metallic elements cerium, lanthanum, and yttrium to graphite rod electrodes resulted in different amounts of the hollow higher fullerenes (HHFs) C76-D2(1), C78-C2v(2), and C78-C2v(3) in carbon-arc fullerene-containing soots. The reaction of trifluoroiodomethane with these and other soluble HHFs at 520-550 degrees C produced 21 new C76,78,84,90(CF3)n derivatives (n = 6, 8, 10, 12, 14). The reaction with C76-D2(1) produced an abundant isomer of C2-(C76-D2(1))(CF3)10 plus smaller amounts of an isomer of C1-(C76-D2(1))(CF3)6, two isomers of C1-(C76-D2(1))(CF3)8, four isomers of C1-(C76-D2(1))(CF3)10, and one isomer of C2-(C76-D2(1))(CF3)12. The reaction with a mixture of C78-D3(1), C78-C2v(2), and C78-C2v(3) produced the previously reported isomer C1-(C78-C2v(3))(CF3)12 (characterized by X-ray crystallography in this work) and the following new compounds: C2-(C78-C2v(3))(CF3)8; C2-(C78-D3(1))(CF3)10 and C(s)-(C78-C2v(2))(CF3)10 (both characterized by X-ray crystallography in this work); C2-(C78-C2v(2))(CF3)10; and C1-C78(CF3)14 (cage isomer unknown). The reaction of a mixture of soluble higher fullerenes including C84 and C90 produced the new compounds C1-C84(CF3)10 (cage isomer unknown), C1-(C84-C2(11))(CF3)12 (X-ray structure reported recently), D2-(C84-D2(22))(CF3)12, C2-(C84-D2(22))(CF3)12, C1-C84(CF3)14 (cage isomer unknown), C1-(C90-C1(32))(CF3)12, and another isomer of C1-C90(CF3)12 (cage isomer unknown). All compounds were studied by mass spectrometry, (19)F NMR spectroscopy, and DFT calculations. An analysis of the addition patterns of these compounds and three other HHF(X) n compounds with bulky X groups has led to the discovery of the following addition-pattern principle for HHFs: In general, the most pyramidal cage C(sp(2)) atoms in the parent HHF, which form the most electron-rich and therefore the most reactive cage C-C bonds as far as 1,2-additions are concerned, are not the cage C atoms to which bulky substituents are added. Instead, ribbons of edge-sharing p-C6(X)2 hexagons, with X groups on less pyramidal cage C atoms, are formed, and the otherwise "most reactive" fullerene double bonds remain intact.  相似文献   

15.
A preliminary study of the long-range (i.e. two-bond or longer) (13)C--(13)C coupling constants in natural abundance C(70) shows, consistent with recent theoretical calculations by Peralta et al. that the largest long-range J(CC) values for the polar and equatorial sites are clearly smaller than the largest long-range J(CC) values for the other three sites. The unusually large size of the (2)J(CC) couplings between inequivalent carbons in a nonpolar pentagon in C(70) has no analog among (2)J(CC) data reported for planar aromatic compounds. No long-range J(CC) values appear to have been reported for any curved aromatic compounds. In addition, much more precise (1)J(CC) values were obtained for C(70) than was possible about 15 years ago. Comparing the chemical shifts for each of the five isotopomers of C(70) containing only one (13)C nucleus and the frequencies of the satellites for each of the four isotopomers containing two adjacent and inequivalent (13)C nuclei indicates that replacing (12)C with (13)C shields the adjacent (13)C nucleus by 15 to 23 ppb, consistent with the limited (1)Delta(13)C((13/12)C) isotope effect data available on a few small aromatic molecules. Such measurements become possible with natural abundance C(70) only by using a (13)C cryoprobe and a high-field spectrometer (700 MHz). The additional information that could be obtained from a spectrum obtained under ultrahigh resolution conditions is discussed. Secure identification of the singlets arising from the four (12)C(68) (13)C(2) isotopomers with equivalent adjacent (13)C nuclei is necessary to allow the largest long-range J(CC) values to be precisely determined. The presence of numerous isotopomers containing two or more (13)C nuclei would present a great challenge in interpreting the various signals in a spectrum obtained under ultrahigh resolution conditions.  相似文献   

16.
13C relaxation studies on side-chain methyl groups in proteins typically involve measurements on (13)CHD(2) isotopomers, where the (13)C relaxation mechanism is particularly straightforward in the presence of a single proton. While such isotopomers can be obtained in proteins overexpressed in bacteria by use of (13)C enriched and fractionally deuterated media, invariably all possible (2)H isotopomers are obtained. This results in a loss of both resolution and sensitivity, which becomes particularly severe for larger proteins. We describe an approach that overcomes this problem by chemical synthesis of amino acids containing a pure (13)CHD(2) isotopomer. We illustrate the benefits of this approach in (13)C side-chain relaxation measurements on the mouse major urinary protein selectively enriched with [gamma(1),gamma(2)-(13)C(2),alpha,beta,gamma(1),gamma(1),gamma(2),gamma(2)-(2)H(6)] valine. Relaxation measurements in the absence and presence of pyrazine-derived ligands suggest that valine side-chain dynamics do not contribute significantly to binding entropy.  相似文献   

17.
The nature and importance of C-H···F-C interactions is a topical yet controversial issue, and the development of spectroscopic methods to probe such contacts is therefore warranted. A series of Group 4 bis(benzyl) complexes supported by (σ-aryl)-2-phenolate-6-pyridyl [O,C,N-R(1)] ligands bearing a fluorinated R(1) group (CF(3) or F) in the vicinity of the metal has been prepared. The X-ray crystal structure of the CF(3)-substituted Hf derivative features intramolecular C-H···F-C and Hf···F-C contacts. All complexes have been characterized by multinuclear NMR spectroscopy. The (1)H and (13)C NMR spectra of [M(O,C,N-CF(3))(CH(2)Ph)(2)] derivatives display coupling (assigned to (1h)J(HF) and (2h)J(CF) for Ti; (3)J(HF) and (2)J(CF) (through M···F) for Hf and Zr) between the benzyl CH(2) and CF(3) moieties. [(1)H,(19)F]-HMBC NMR experiments have been performed for the M-[O,C,N-R(1)] complexes and their [O,N,C] counterparts, revealing significant scalar coupling across the C-H···F-C interactions for Ti-[O,C,N] and [O,N,C] species.  相似文献   

18.
Isotropic and anisotropic ESR spectra were observed for the radical anions of hexafluorocyclobutene (c-C(4)F(6)(-)), octafluorocyclopentene (c-C(5)F(8)(-)) and perfluoro-2-butene (CF(3)CF=CFCF(3)(-)) in gamma-irradiated plastically crystalline neopentane, tetramethylsilane (TMS) and TMS-d(12) matrices, or the rigid 2-methyltetrahydrofuran (MTHF) matrix. The isotropic spectra of c-C(4)F(6)(-) and c-C(5)F(8)(-) are characterized by three different sets of pairs of (19)F nuclei with the isotropic hyperfine (hf) splittings of 15.2 (2F), 6.5 (2F), 1.1 (2F) mT for c-C(4)F(6)(-) and 14.7 (2F), 7.4 (2F), 1.0 (2F) mT for c-C(5)F(8)(-). By comparison with the results of ab initio quantum chemical computations, the large triplet (19)F hf splittings of ca. 15 mT are assigned to the two fluorines attached to the C=C bond. The UHF, B3LYP and MP2 computations predict that the geometrical structures of the perfluoroalkenes are strongly distorted by one-electron reduction to form their radical anions; c-C(3)F(4)(-): C(2) symmetry ((2)A state) <-- C(2)(v) ((1)A(1)), c-C(4)F(6)(-): C(1) ((2)A) <-- C(2)(v) ((1)A(1)) and c-C(5)F(8)(-): C(1) ((2)A) <-- C(s) ((1)A'). The structural distortion arises from a mixing of the pi* and higher-lying sigma* orbitals at the C=C carbons similar to that previously found for CF(2)=CF(2)(-) with a C(2)(h) distortion. The isotropic (19)F hf splittings computed with the B3LYP method with 6-311+G(2df,p) basis set for the geometry optimized by the UHF and/or MP2 methods are within 6% error of the experimental values. The experimental anisotropic spectra of c-C(4)F(6)(-), c-C(5)F(8)(-) and CF(2)=CF(2)(-) were satisfactorily reproduced by the ESR spectral simulation method using the computed hf principal values and orientation of (19)F nuclei. In addition, the electronic excitation energies and oscillator strengths for the CF(2)=CF(2)(-), c-C(3)F(4)(-), c-C(4)F(6)(-) and c-C(5)F(8)(-) radical anions were computed for the first time by TD-DFT methods.  相似文献   

19.
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.  相似文献   

20.
The promesogenic hexacatenar tridentate ligands L3(Cn) (I shape) and L4(Cn) (V shape) react with trivalent lanthanide trifluoroacetates, Ln((CF3CO2)3, to give either monometallic [Ln(Li(Cn))(CF3CO2)3] or trifluoroacetato-bridged bimetallic [Ln(Li(Cn))(CF3CO2)3]2 complexes in the solid state, as exemplified by the crystal structures of [Lu(L4(CO))(CF3CO2)3(H2O)], [Lu(L4(CO))(CF3CO2)3]2, and [La(L3(C4))(CF3CO2)3]2. Although the dimerization process is influenced by the competiting complexation of anions or solvent molecules, the coordination of CF3CO2- instead of NO3- to Ln(III) produces a significant lengthening of the Ln-N(ligand) bond distances. This translates into a considerable decrease of the affinity of the Li(C12) (i = 3, 4) ligands for Ln(CF3CO2)3 in solution, thus leading to significant dissociation of the [Ln(Li(C12))(CF3CO2)3] complexes at millimolar concentrations. The thermal properties of these complexes also suffer from their limited thermodynamic stability, and the thermotropic liquid crystalline phases produced at high temperatures reflect mixtures of different species. However, a hexagonal columnar organization characterizes the main component in the mesophases obtained with [Ln(L3(C12))(CF3CO2)3] at high temperature. A tentative interpretation of the small-angle X-ray scattering (SAXS) profiles suggests that disklike dimers of [Ln(L3(C12))(CF3CO2)3]2 are packed along the columnar axes. For [Ln(L4(C12))(CF3CO2)3], SAXS profiles are compatible with a lamellar organization in the mesophases originating from the existence of rodlike dimers of [Ln(L4(C12))(CF3CO2)3]2 as the major component in the liquid-crystal state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号