首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Corn starch was modified by cross-linking with epichlorohydrin and plasticizer glycerol. X-ray diffraction studies showed that relative crystallinity of the native and cross-linked starch were similar and were not affected by cross-linking. Different films were prepared by blending corn starch, cross-linked starch or glycerol modified starch in LDPE. The mechanical properties of the films were studied for tensile strength, elongation, melt flow index, and burst strength. The properties of the blend films were compared with LDPE films. It was observed that with the blending of 7.5% native starch, there was a decrease in tensile strength, elongation and melt flow index but burst strength increased. The tensile strength, elongation and melt flow index of the films containing cross-linked starch was considerably higher than those containing native starch but the burst strength showed a reverse trend. For native starch and cross-linked starch modified with glycerol, the elongation and melt flow index of the films increased but burst strength decreased. Surface scanning of the blend films were done by scanning electron microscope. Film containing cross-linked starch/glycerol modified starch in the blend was observed to be smoother than the native starch blend films.  相似文献   

2.
Yellow ginger starch acetates with different degrees of substitution (DS) were prepared by reacting native starch with glacial acetic acid/acetic anhydride using sulfuric acid as catalyst. X-ray diffraction (XRD) of acetylated starch revealed that the crystal structure of native starch was disappeared and new crystalline regions were formed. Their formation was confirmed by the presence of the carbonyl signal around 1750 cm−1, as well as the reduced hydroxyl groups, in the Fourier transform infrared spectroscopy (FT-IR). The scanning electron microscopy (SEM) suggested most of the starch granules disintegrated with many visible fragments along with the increasing DS. The thermal behavior of the native starch and starch acetate were investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA), it was observed that the thermal stability of acetylated starch depends on the degree of substitution. Thermal stability of high DS acetylated starch is much better than that of the original starch when DS reached to 2.67.  相似文献   

3.
This study was carried out to understand and establish the changes in physicochemical properties of starch extracted from Chinese yam (Dioscorea opposita Thunb.) after acetylation. Yam starch acetates with different degrees of substitution (DS) were prepared by the reaction of yam starch with glacial acetic acid/acetic anhydride using sulfuric acid as the catalyst. Their formation was confirmed by the presence of the carbonyl signal around 1750 cm-1 in the Fourier transform infrared (FT-IR) spectra. The thermal behavior of the native starch and starch acetate were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results reveal that the starch acetates are more thermally stable than the native starch. The starch esters showed 50% weight loss at tem- peratures from 328℃ to 372 ℃ , while the native starch underwent 50% weight loss at 325℃ . The glass transition temperature (Tg) of the starch decreased from 273℃ to 226℃. The X-ray diffraction (XRD) patterns could be classified as typical of the C-type for yam starch. X-ray diffraction also showed the loss of the ordered C-type starch crystalline structure and the degree of crystallinity of starch de- creased from 36.10% to 10.96% with the increasing DS. The scanning electron microscopy (SEM) sug- gested that the most of the starch granules disintegrated with many visible fragments with the in- creasing DS.  相似文献   

4.
采用自设计的双螺杆结构挤出制备聚乳酸(PLA)/醋酸淀粉(AS)的全生物降解材料,考察材料的AS的含量和取代度对复合材料动态流变性能、机械性能的影响。研究结果表明,AS含量明显影响复合材料的力学性能、复合黏度和储能模量:当AS含量从45%增加到70%,材料的拉伸强度下降,复数黏度和储能模量则提高。随着AS取代度由1.0上升为3.0,复合材料的复数黏度和储能模量下降,拉伸强度由12.0MPa上升为15.5MPa。对复合材料进行电镜扫描分析发现,AS以海岛结构形式分散在PLA的连续相中,取代度2.0的AS与PLA相容性最好,当其质量含量达到70%,材料的拉伸强度仍然不低于10.0MPa,具有较好的机械强度。  相似文献   

5.
Blends of biodegradable polymers polylactic acid/thermoplastic starch/polyhydroxybutyrate (PLA/TPS/PHB) were prepared using a twin-screw extruder. The TPS content was constant (50 %) and the PHB content in the blends was gradually changed from 0 mass % to 20 mass %. TPS was prepared by melting, where a mixture of native starch, water and glycerol was fed into the twinscrew extruder. Average temperature of extrusion was 180°C and the concentration of glycerol was 40 mass %. Influence of the PHB concentration in the blend and that of the processing technology on the mechanical and rheological properties of the PLA/PHB composition containing TPS were studied. Mechanical properties were measured 24 h after the film and monofilament preparation and also after the specific storage time to study the effect of storage on the properties. The results indicate that differences in morphology strongly influence the mechanical properties of the studied materials with identical material composition.  相似文献   

6.
A study has been made on the compatibility of recycled polyethylene terephthalate (R-PET) and low density polyethylene (LDPE) blend in the presence of ethylene vinyl acetate (EVA) as a compatibilizing agent prepared by extrusion hot stretching process. EVA content in the blend as a compatibilizing agent was an enhancement effect on radiation crosslinking of R-PET/EVA/LDPE blends and the highest radiation crosslinking was obtained when the EVA content was reached at 10 % EVA when irradiated by gamma irradiation. Blends containing different (EVA) ratios were irradiated to different doses of gamma irradiation 25, 50 and 100 kGy. The effect of the compatibilizer and radiation on mechanical, thermal properties of R-PET together with LDPE and morphology has been investigated. It was found that gamma irradiation together with the presence of compatibilizing agent (EVA) has positive effect on the mechanical and thermal properties of R-PET/LDPE blend. The structural properties of R-PET/LDPE modified by gamma irradiation and EVA as compatibilizing agent was examined by SEM. Also, it was found that the optimum concentration of EVA and gamma irradiation dose was found to be 10 % EVA and 100 kGy, respectively.  相似文献   

7.
Polyimide/polyimide molecular composite (MC) films comprised of a rigid polyimide derived from biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) and a flexible polyimide derived from BPDA and bis (3,3'-diaminodiphenyl) acetylene (intA) and/or oxydianiline (ODA) were prepared by blending the polyamic acid solutions in 7 : 3 weight ratio, and then imidizing the blend films. Acetylene content in the flexible polyimide backbone was controlled by the ratio of intA and ODA. Cold-drawing of the blend polyamic acid films, followed by imidization, gives high modulus polyimide/polyimide MC films. The modulus of the MC films increased almost linearly with the draw ratio, reaching 25.5 GPa for the 40% drawn film. Acetylene groups in the flexible polyimide can be thermally cured to crosslink. The onset of exotherm appeared at 340°C on DSC, reaching maximum at 398°C. After the thermal crosslinking, the MC films maintained the high modulus, though elongation became small. Taking advantage of the crosslinkable acetylene units, two MC films were laminated and processed at 400°C for 20 min under 100 kg/cm2 to give a good-quality laminate film. The interface of the two films was strongly bonded through the crosslinking of acetylene groups. Laminate films maintained the high modulus afforded by the cold-drawing. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The study deals with the effect of chemical and physical modifications on thermal properties and solubility properties of films based on amaranth flour starch–protein hydrolysate. Biodegradable and edible films were prepared by casting a 25% (w/w) solution of hydrolysate containing 20% glycerol and various additions of dialdehyde starch (0, 1 and 5%). After thermal exposure of films at 65 and 95 °C (for 6 and 48 h), thermal properties of films were studied employing differential scanning calorimetry and thermogravimetric analysis. Film solubility tests were performed in an aqueous environment at 25 °C. Chemical and physical modifications of films markedly affect their thermal properties and solubility.  相似文献   

9.
In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low‐density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1‐nm thickness and good transparency was synthesized using the well‐known Hummers's method. Fourier transform infrared and X‐ray photoelectron spectroscopy data exhibited efficient reduction of GO with almost high C/O ratio of RGO. Scanning electron microscopy showed the well distribution of GO and RGO within LDPE/EVA polymer matrix. The integrating effects of GO and RGO on mechanical and gas permeability of prepared films were examined. Young's modulus of nanocomposites are improved 65% and 92% by adding 7 wt% of GO and RGO, respectively. The tensile measurements showed that maximum tensile strength emerged in 3 wt% of loading for RGO and 5 wt% for GO. The measured oxygen and carbon dioxide permeability represented noticeably the attenuation of gas permeability in composite films compared with pristine LDPE/EVA blend. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
《先进技术聚合物》2018,29(7):1930-1938
Low‐density polyethylene (LDPE) and polystyrene (PS) films with hydrophilic surface were prepared by photochemical grafting of sulfobetaine‐based copolymer containing photolabile moiety, and long‐term stability of the hydrophilic nature of the surfaces in seawater was proved. The sulfobetaine‐based copolymer was prepared by copolymerization of N,N‐dimethyl‐N‐(3‐(methacryloylamino)propyl)‐N‐(3‐sulfopropyl) ammonium betaine with 2 or 5 mol% of N‐methacryloyl‐4‐azidoaniline, and the resulted polymers were grafted onto the plasma pretreated LDPE and PS films. The contact angle measurements were used to prove the modification as well as to follow the changes in the hydrophilicity during storage at room temperature under air atmosphere as well as in seawater at 32°C. The stability of the polymer layer was confirmed also by FTIR and AFM. Polysulfobetaine‐modified LDPE and PS surfaces exhibited significantly higher long‐term hydrophilicity compared with only plasma treated LDPE and PS surfaces.  相似文献   

11.
The main shortcomings of biodegradable starch/poly(vinyl alcohol) (PVA) film are hydrophilicity and poor mechanical properties. With an aim to overcome these disadvantages, cornstarch was methylated and blend films were prepared by mixing methylated-cornstarch (MCS) with PVA. The mechanical properties, water resistance and biodegradability of the MCS/PVA film were investigated. It was found that MCS/PVA film had higher water resistance than the native starch/PVA film. However, the water resistance of MCS/PVA films did not have significant difference with the increase in the degree of substitution (DS) of the methylated starch from 0.096 to 0.864. Enzymatic, microbiological and soil burial biodegradation results indicated that the biodegradability of the MCS/PVA film strongly depended on the starch proportion in the film matrix. The degradation rate of starch in the starch/PVA film was hindered by blending starch with PVA. Both tensile strength and percent elongation at break of the MCS/PVA film were improved as DS of the methylated starch increased. Conversely, increasing the methylated starch proportion in film matrix deteriorated both tensile strength and percent elongation at break of the film.  相似文献   

12.
As a novel class of proton exchange membrane materials for use in fuel cells, sulfonated poly(phthalazinone ether ketone)s (SPPEKs) were prepared by the modification of poly(phthalazinone ether ketone). Sulfonation reactions were conducted at room temperature with mixtures of 95–98% concentrated sulfuric acid and 27–33% fuming sulfuric acid with different acid ratios, and SPPEK was obtained with a degree of sulfonation (DS) in the desired range of 0.6–1.2. The presence of sulfonic acid groups in SPPEK was confirmed by Fourier transform infrared analysis, and the DS and structures were characterized by NMR. The introduction of sulfonic groups into the polymer chains increased the glass‐transition temperature above the decomposition temperature and also led to an overall decrease in the decomposition temperature. Membrane films were cast from SPPEK solutions in N,N‐dimethylacetamide. Water uptakes and swelling ratios of SPPEK membrane films increased with DS, and SPPEKs with DS > 1.23 were water‐soluble at 80 °C. Proton conductivity increased with DS and temperature up to 95 °C, reaching 10?2S/cm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 497–507, 2003  相似文献   

13.
A series of polyisophthalamides containing pendent oxybenzoyl groups were prepared from 5-oxybenzoyl-isophthaloyl chloride and aromatic diamines. The analogous unsubstituted polyisophthalamides were also prepared in order to compare the two series and to determine the effect of oxybenzoyl pendent groups on the properties of aromatic polyamides. The modified polymers exhibited better solubility than, and approximately the same glass transition temperatures (in the range 260–290°C) as, the parent unsubstituted polymers. The mechanical strength of polymer films was affected only to a small extent by the presence of side groups, but the thermal resistance was negatively affected, with the result that polyisophthalamides with oxybenzoyl pendent groups began to decompose at about 360°C (TGA), 60–100°C lower than the unsubstituted polyisophthalamides. By means of an appropriate thermal treatment, crosslinking of the modified polymers was achieved and their thermal resistance significantly enhanced.  相似文献   

14.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   

15.
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch–gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels’ syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G′ than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts.  相似文献   

16.
海藻酸钠/羧甲基淀粉共混膜   总被引:6,自引:0,他引:6  
用溶液共混法成功制备出海藻酸钠/羧甲基淀粉共混膜,IR、XRD、SEM结构表征以及力学性能、吸水性和水蒸汽透过率测定结果表明:共混膜中海藻酸钠和羧甲基淀粉间存在强烈的分子间氢键等相互作用及良好的相容性;随羧甲基淀粉含量的增加,共混膜的吸水率显著降低;当羧甲基淀粉含量(wCMS)=0.20时,共混膜的抗张强度和断裂伸长率分别为53.1MPa和5.3%,比海藻酸钠膜分别提高了97.4%和60.6%,水蒸汽透过率达最小值,是一种具有潜在应用前景的可食性包装膜材料。  相似文献   

17.
Highly porous rigid polybenzoxazole (PBO) network films were prepared using a precursor-mediated fabrication method. The obtained PBO network films possessed high porosities of ~40%, as calculated from their apparent densities. In addition, the 5%-weight-loss temperatures of the films were ≥570°C under nitrogen atmosphere, demonstrating an excellent thermal stability. The electrical conductivities of the obtained PBO network films and phosphoric-acid-doped PBO network films were also evaluated. In addition, PBO network films containing pyridine rings were prepared and subjected to phosphoric acid doping. The resultant films were found to exhibit the highest conductivities of the films considered in this study owing to proton conduction both between phosphate groups and between the pyridine rings. The highest conductivity was found for a film prepared from a phosphoric-acid-doped PBO network containing pyridine rings, that is, 2.09 × 10?1 S/cm at 150°C, which was higher than that of Nafion ? . Therefore, these films can be used at higher temperatures than that of Nafion ? .  相似文献   

18.
This study aimed to determine the effect of “annealing” acetylated potato starch with a homogenous granule size and various degrees of substitution on the thermal pasting characteristics (DSC), resistance to amylases, rheology of the prepared pastes, swelling power and dynamics of drug release. A fraction of large granules was separated from native starch with the sedimentation method and acetylated with various doses of acetic anhydride (6.5, 13.0 or 26.0 26 cm3/100 g starch). The starch acetates were then annealed at slightly lower temperatures than their pasting temperatures. The annealing process caused an almost twofold increase in the resistance to amylolysis and a threefold increase in the swelling power of the modified starch preparations. The heat of phase transition decreased almost two times and the range of starch pasting temperatures over two times, but the pasting temperature itself increased by ca. 10 °C. The 40 g/100 g addition of the modified starch preparation decreased the rate of drug release from a hydrogel by ca. one-fourth compared to the control sample.  相似文献   

19.
Epoxy resins modified by an organosoluble phosphorus‐containing bismaleimide (3,3′‐bis(maleimidophenyl) ­phenylphosphine oxide; BMPPPO) were prepared by simultaneously curing epoxy/diaminodiphenylmethane (DDM), and BMPPPO. The resulted epoxy resins were found to exhibit glass transition temperatures as high as 212 °C, thermal stability at temperatures over 350 °C, and excellent flame retardancy with Limited oxygen index (LOI) values around 40. Incorporation of BMPPPO into epoxy resins via the thermosetting blend was demonstrated to be an effective way to enhance the thermal properties and flame retardancy simultaneously. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10–50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号