首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高太赫兹行波管的输出功率,提出了多个传输信号进行功率合成的方法。首先,对D波段多注慢波结构进行设计及功分器的优化;然后,通过微铣削工艺完成了两注THz折叠波导结构的加工,加工精度满足实际设计要求;最后,利用CST软件对该结构的冷测与互作用特性进行了分析。仿真结果表明:该结构的S11值小于-20 dB,实际测试值在-20 dB左右,两者较吻合。冷测分析表明该结构具有22 GHz(16%)的冷带宽,3 dB增益带宽为12.5 GHz。在各电子注的电压、电流、峰值输入功率大小分别为15.79 kV, 12 mA, 10 mW时,单注结构获得了1.58 W的输出功率及22 dB的增益;而两路信号在互作用完成后,获得了2.91 W的合成功率输出,合成效率不低于90%。通过合成的方法可以有效提高THz行波管的输出功率。.  相似文献   

2.
为了提高THz行波管的输出功率,通过并行多注和功率合成的方法,完成了并行多注D波段折叠波导行波管的理论分析与数值模拟。计算结果表明:单束行波管在0.135~0.157THz频率区间具有很好的色散平坦度,3dB带宽为13GHz,0.14THz处获得了20.88dB的最大增益;多束合成行波管在0.14THz处获得了20.8dB的合成增益,3dB带宽区间合成效率不低于92%。数值模拟表明该方法很好地实现了多路放大信号的合成输出。并行多注行波管具有输出功率大、单束电流小、聚焦磁场低等优点,能够在低发射电流密度条件下实现大功率THz辐射。  相似文献   

3.
颜胜美  苏伟  王亚军  徐翱  陈樟  金大志  向伟 《物理学报》2014,63(23):238404-238404
为解决THz行波管工作电流过小、输出功率低等问题,提出了基模多注工作模式的折叠波导行波管.首先,获得了基模多注折叠波导色散特性的等效传输线计算模型,并与数值模拟结果进行了比较;然后,对基模多注折叠波导的传输特性进行了模拟计算;最后,通过模拟和理论计算完成了0.14 THz基模多注折叠波导行波管的注波互作用特性分析.电子注参数为12 m A,15.75 k V时,获得的3 d B带宽为25 GHz(128—153 GHz),最大增益为33.61 d B,最大峰值功率为23 W;电子注参数为30 m A,15.75 k V时,在0.14 THz处获得了38 d B增益,最大脉冲输出功率为63.1 W.对比同条件下基模单注折叠波导行波管,3 d B带宽提升了1倍,0.14 THz处输出功率增大了9.66倍,互作用效率增大了3.22倍;当增益相同时,多注方式的互作用长度较单注缩短了33%.该方法能够有效增大THz行波管的工作电流,提高互作用增益及效率、3 d B带宽、输出功率;在增益相同时,基模多注行波管可以做得更短更紧凑.  相似文献   

4.
共焦波导结构回旋行波管的设计与仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
针对0.14 THz大气窗口,利用CST微波工作室和3维粒子模拟软件,对共焦波导结构的太赫兹回旋行波管进行了冷腔色散和注波互作用的模拟研究。以TE06模式作为互作用工作模式,在电压为35 kV、电流为2 A、横纵速度比为0.85的电子束参数下,当输入信号为1 W时,得到最高2 kW的微波功率输出,3 dB带宽为3.5 GHz,增益为30 dB。  相似文献   

5.
以折叠波导作为为慢波结构进行研究分析,利用三维电磁仿真软件HFSS和CST,对0.14THz行波管模型进行了折叠波导慢波结构、电子光学系统和输入输出窗等的模拟设计,并完成了整管的PIC注波互作用的仿真计算与优化。进行了整管的焊接工艺设计和热测实验,研制出的样管在电压15.4kV、电流17.4mA下,脉冲工作输出最大功率为8.3 W,输出中心频率为140.8GHz,最大增益为28dB,-3dB带宽为2.9GHz。  相似文献   

6.
刘青伦  王自成  刘濮鲲 《物理学报》2012,61(12):124101-124101
提出采用圆形电子注和双排矩形梳状慢波结构作为W波段宽频带行波管注波互作用回路. 对该慢波回路的"冷"态特性、输入输出结构等方面进行了模拟仿真和分析, 研究结果表明, 该结构色散特性较好, 带宽较宽; 通过调整双排矩形梳状慢波结构之间的距离和电子注通道半径的尺寸, 圆形电子注系统取得了和带状注系统相同的耦合阻抗; 且该结构传输特性较好, 优化后整管的驻波比能在较宽的频带内保持在2以下. 此外, 对该慢波系统的大信号理论计算和PIC粒子模拟结果一致. 在50 mW驱动功率下, 输出功率在10 GHz带宽内大于40 W, 增益高于29 dB.  相似文献   

7.
提出了一种新型的菱形微带曲折线慢波结构。该结构可适用于低电压、宽带宽、中等功率水平的高效率毫米波行波管。和传统的慢波结构相比,微带曲折线是一种平面结构,因此其加工工艺可采用2维微细加工技术。该结构可以用带状电子束进行注-波互作用,并且不需要额外的电子束通道。给出了菱形微带曲折线慢波结构在140 GHz的色散曲线和注-波互作用模拟分析。研究结果显示:在输入功率为40 mW,带状电子束的电流和工作电压分别为90 mA和7 kV的条件下,该微带曲折线行波管可以获得数十W功率输出,互作用效率可达14.3%,瞬时3 dB带宽为18 GHz(132~150 GHz)。  相似文献   

8.
提出了一种角度对数周期微带曲折线慢波结构,该结构具有微带型慢波结构尺寸小、易加工的特点,同时特殊的结构使得它可以工作在极低的电压下,可用于低工作电压、宽频带毫米波径向束行波管。给出了这种慢波结构在Ka波段的色散特性和传输特性,并进行了注波互作用的分析。计算结果表明:该新型慢波结构的工作电压可低至809 V,输出功率26 W,3 dB带宽约为19 GHz (27~46 GHz),虽然单个角度对数周期微带曲折线慢波结构的输出功率较小,但是这种结构通过功率合成,可以达到数百W的功率输出。  相似文献   

9.
赵征远  刘文鑫  杨龙龙  欧粤 《强激光与粒子束》2021,33(5):053004-1-053004-8
高频系统是行波管的核心部件,它会直接影响行波管的工作频率、带宽、增益等性能指标。为了获得更大的输出功率和更高的增益,对0.34 THz双注高次模折叠波导行波管的基本特性进行了研究,计算了双注折叠波导的色散特性和耦合阻抗,并与仿真结果进行对比,结果显示色散特性随频率升高差距增大,耦合阻抗在高频段匹配较好,并研究了损耗特性。利用CST仿真工作室对双注折叠波导的注波互作用特性进行了仿真,实现41.68 W输出。为了获得更高的输出,通过增大直波导高度,最终使输出功率提高了52.7%,达到63.12 W。最后设计了符合要求的盒型输出窗和模式转换器,验证了高频系统的传输特性。  相似文献   

10.
V波段大功率带状注曲折波导行波管   总被引:2,自引:2,他引:0       下载免费PDF全文
利用曲折波导慢波结构和一个长宽比为3∶1的带状电子注作为注-波互作用电路,完成了对V波段大功率行波管互作用电路的设计。分析了带状电子注通道对高频特性的影响,并在综合考虑色散和耦合阻抗的情况下得到了优化的结构参数。建立了3维的V波段带状注曲折波导行波管的电路模型,并利用CST粒子工作室完成了注-波互作用的仿真研究。研究结果表明,当工作电压和电流分别为17 kV和150 mA时,带状注曲折波导行波管在58~62 GHz时的饱和平均输出功率大于160 W,增益大于34.7 dB。  相似文献   

11.
利用三维粒子模拟仿真软件,对共焦波导结构的0.4 THz回旋行波管进行了注波互作用的模拟研究。以共焦波导的冷腔色散以及衍射损耗入手,最终选定HE06模作为互作用工作模式。为了对寄生振荡进行抑制,在互作用结构中引入了截断。在模拟过程中,通过调节束压、束流、工作磁场、电子束横纵速度比,得到了最优的工作参数。最终,在束压34 kV、磁场14.25、束流2 A、横纵速度比0.75的工作参数下,当输入信号为1 W时,得到了最高2.76 kW的功率输出,增益超过34 dB,3 dB带宽为8 GHz,效率达到4%。  相似文献   

12.
曾鑫  曲兆伟  薛谦忠 《强激光与粒子束》2021,33(3):033007-1-033007-6
扩展互作用速调管采用多间隙分布作用谐振腔和全金属平面结构,互作用电路短、单位长度增益高,其平面化结构特征与现代微加工工艺相兼容,已成为发展太赫兹高功率源的研究热点,进一步展宽扩展互作用速调管放大器的带宽成为拓展其应用的关键技术问题。设计了一种G波段5腔多间隙注波互作用电路,采用参差调谐技术扩展群聚段带宽和滤波器加载技术扩展输出段带宽,通过CST软件对结构参数优化和输出特性模拟仿真,结果表明:在电子注电压19 kV,电流300 mA,输入功率120 mW时,获得输出功率222 W,电子效率3.89%,增益32.67 dB,3 dB瞬时带宽达到了1.5 GHz。  相似文献   

13.
S波段宽带大功率连续波耦合腔行波管3维模拟设计   总被引:3,自引:0,他引:3  
 使用3维PIC粒子模拟软件定量分析了耦合腔行波管的大信号注波互作用行为。使用完整的仿真模型完成了S波段连续波管型的设计,达到如下设计指标:工作频率2.0~2.3 GHz,输出功率4.3 kW,频带内增益波动±0.7 dB。提出了使用大介电常数微扰介质棒减小耦合阻抗计算误差的方法,研究了行波管的冷腔特性,给出了色散、耦合阻抗等参数。  相似文献   

14.
通过模拟计算,分析螺旋线内径和螺距变化对色散和耦合阻抗的影响,优化慢波结构,初步设计了Ku波段螺旋线行波管慢波结构。模拟行波管输入输出结构,得到输入端反射系数小于-19 dB,电压驻波比小于1.24。电子聚焦系统采用周期永磁聚焦,磁场周期为8.5 mm,计算得到磁场峰值为0.17 T。为提高注波互作用效率,采用具有动态速度渐变特性的慢波结构,使得电子注与高频场有足够的互作用时间,从而保证电子不断地将能量交给高频场。运用三维PIC粒子模拟软件分析行波管的注波互作用,得到在12.5~16 GHz频率范围内输出功率大于88.7 W,电子效率大于14.8%,增益大于34.6 dB。  相似文献   

15.
王自成  唐伯俊  李海强  田宏  董芳 《强激光与粒子束》2018,30(5):053008-1-053008-5
利用CST PIC计算了基于双排矩形波导慢波结构的W波段行波管的注波互作用,在采用10 kV,70 mA的电子注的条件下,在92~97 GHz范围内,输出功率大于35 W,增益大于30 dB,电子效率约为5%。即使在10 kV较低的电压下,双排矩形波导慢波结构的尺寸仍然较大,有利于降低制造难度。提出了一种基于电火花线切割的加工制造工艺,成功制造了双排矩形波导慢波结构部件。在92~97 GHz范围内对所需盒形窗和电子枪进行了计算机模拟,设计、加工了盒形窗和电子枪的相关零件,制造了相关部件。将慢波结构部件和输能窗部件组装起来进行了冷测,驻波比在90~100 GHz范围内小于2.067。  相似文献   

16.
建立了螺旋线三维多频非线性互作用模型.通过场论的方法建立线路场方程,结合粒子模拟(PIC)方法和谐波展开法,建立三维空间电荷场模型.模拟了8—18GHz宽带行波管的基波和高次谐波,计算了AM-AM幅度失真和AM-PM相位失真,三次交调和五次交调分量.通过频率扫描得到的8—18GHz饱和输出功率和饱和增益,结果与热测结果接近,且饱和输出功率误差在1dB以内. 关键词: 注波互作用 三维 非线性 螺旋线行波管  相似文献   

17.
为了获得0.22THz宽带折叠波导行波管,对行波管的慢波结构和输入输出窗结构进行了宽带设计。通过理论分析和电磁仿真计算出合适的参数,使慢波结构在0.22THz工作点附近的色散曲线平坦,耦合阻抗变化小,模拟计算得到的慢波结构3dB带宽大于16GHz;通过对盒型窗结构及匹配段的优化计算,得到的输入输出结构在大于30GHz范围内S11参数小于-25dB。根据该设计进行了两轮制管和实验研究,得到了一支3dB瞬时带宽约8.8GHz,另一支3dB瞬时带宽大于12GHz的0.22THz折叠波导行波管,中心频率的峰值功率大于400mW。  相似文献   

18.
以弱色散特性的扇形金属-介质夹持杆螺旋线慢波结构的Ka波段行波管作为研究对象,进行了互作用特性仿真研究。采用螺距跳变和磁场跳变技术进一步提高了该行波管在工作频带的输出功率和电子效率,并解决了电子注散焦问题。设计结果表明:当工作电压为9 kV、工作电流为210 mA时,行波管在24~40 GHz整个频带内,各频点的增益在37.7~48.7 dB之间,电子效率在15.18%~19.42%之间,输出功率大于286 W。此结果较之均匀周期的设计结果,电子效率增幅在4.19%以上,输出功率增长率在4.3%以上,尤其在26~37 GHz范围内,电子效率增幅达到了11.8%以上,输出功率增长率达11.9%。  相似文献   

19.
赖剑强  魏彦玉  许雄  沈飞  刘洋  刘漾  黄民智  唐涛  宫玉彬 《物理学报》2012,61(17):178501-178501
采用交错双栅结构,结合带状电子注,研究了一种工作在140 GHz频段的大功率行波管. 本振模数值计算表明该结构具有良好的色散特性和耦合阻抗.针对所采用的慢波结构, 提出了慢波过渡结构、输入输出耦合器和集中衰减器,保证了行波管的良好工作. 利用三维大信号模拟计算的方法得到的结果显示,当电子注直流功率为5.115 kW,输入信号功率为0.1 W时, 所研究的行波管能在132-152 GHz范围内提供大于300 W的峰值功率,其中在138 GHz时得到最大功率546 W, 对应增益为37.37 dB.当在0.027-0.46 W内调节输入信号功率,可以保持该行波管在128-152 GHz 频带内得到大于440 W的峰值功率,对应的电子效率大于8.6%. 结果显示该行波管将在大功率短毫米波领域具有重要意义和潜在应用价值.  相似文献   

20.
Ka波段二次谐波回旋速调管放大器的输出特性   总被引:4,自引:1,他引:3       下载免费PDF全文
 根据谐波回旋速调管放大器的注-波互作用特点,对Ka波段二次谐波三腔回旋速调管放大器的输出腔进行了数值模拟和优化设计,获得了输出腔末端高频波绕射输出孔径和腔体绕射Q值的对应关系。通过PIC粒子模拟,分析了该放大器的频率响应特点等输出特性。结果表明,在35 GHz频率,磁场0.685 T,电子注电压70 kV,电流15 A,横纵速度比为1.45,输入功率1.6 kW时,放大器可以获得超过220 kW的峰值输出功率、约22%的效率和23 dB的增益,3 dB带宽可达到110 MHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号