首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical impedance spectroscopy, ac voltammetry and fractal analysis were used to characterize model compounds, compound mixtures and extracted samples of sea surface microlayer (ssm) und underlying water (ulw). The reasons for carrying out this work were to use the scientific basis of these characterizations in future on-line analytical procedures of ssm. The mercury (Hg) drop electrode uncoated and coated with a monolayer of dioleoyl phosphatidylcholine (DOPC) was used as an experimental basis for investigation of the major sea surface film forming material. Firstly, the interaction of the uncoated and DOPC coated Hg electrode with model water insoluble compounds of increasing polarity was investigated. The compounds studied in order of increasing polarity were: nonadecane, stearic acid, cholesterol and cardiolipin. Subsequently the electrochemical response of the system to different ssm extracts was compared to signals observed with model compounds to demonstrate method selectivity. From the electrochemical results, it is observed that both the molecular structure and polarity of the investigated compounds have a role in their interaction with the uncoated and DOPC coated electrode. In the fractal analysis the increase above 2 of fractal dimension D imparted to the DOPC layer is related to the degree of apolarity of the additive model compound. Consistent with this, the more apolar hexane extracted ssm 2 imparts a fractal dimension D value of 2.45 when incorporated in DOPC layers. The electrochemical response to the ssm and ulw follows that characteristic of sterol compounds.  相似文献   

2.
利用二次电子衬度曲线法测定了聚氯乙烯甲基丙烯酸甲酯丁二烯苯乙烯共聚物(PVCMBS)共混物冲击断面的形貌特征及对应的分形维数值.结果表明,材料的断口或微观结构并不是严格的分形结构,这种自相似性仅存在于一定尺码范围内,不同断面形貌特征所对应的分形维数测量值不同,随着MBS用量增加,PVCMBS共混物缺口冲击强度随满足自相似原理的形貌特征所对应的分形维数值增大而增大.本文从理论上讨论了材料断裂韧性与分形维数的关系.  相似文献   

3.
We present electrochemical synthesis of super water-repellent poly(alkylpyrrole) films which exhibit excellent environmental stability in terms of contact angle (>150 degrees ) for water. The poly(alkylpyrrole) films synthesized under an optimized electrochemical condition consisted of thousands of micro-scaled 'needles' which densely aligned by shoulder to shoulder. The surface of the aligned 'needles' was analyzed by a box-counting method, to be a fractal structure with a dimension of 2.18.  相似文献   

4.
The quantification of surface roughness of globular proteins and synthetical macromolecules in the globular state is discussed using the concept of fractality. The Hausdorff dimension as a measure for local and global fractality of surfaces is applied. To calculate the Hausdorff dimension of any surface at a high level of accuracy, a new algorithm is presented that is based on a triangulated solvent-accessible molecular surface. It can be demonstrated that protein surfaces (as calculated on the basis of experimentally determined structures) as well as surfaces of globular polyethylene (PE) conformers (calculated on the basis of structural information basing on extensive Monte Carlo and molecular dynamics simulations) in fact show self-similarity within a reasonable yardstick range, at least in a global statistical sense. The same is true for parts of a protein surface provided that these regions are not too small. The concept of self-similarity breaks down when individual surface points are considered. The results obtained for the fractal dimension of PE surfaces (average fractal dimension D = 2.23) lead to the conclusion that protein surfaces probably do not exhibit a unique and specific degree of geometrical complexity (or surface roughness) characterized by a fractal dimension of approximately D = 2.2 as was argued in the past. It is clear that the concept of self-similarity is helpful for the classification of surface roughness of large molecules, but it seems questionable whether this concept is useful for the identification of active sites or other questions related to the field of molecular recognition. © John Wiley & Sons, Inc.  相似文献   

5.
The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).  相似文献   

6.
The patination of copper is known for its complexity and heterogeneous formation. For a deeper investigation, a locally resolved surface analysis was considered. An exact determination of the accessed area and a potentiostatic control in a three-electrode configuration was reached with the use of the electrochemical microcell technique, which enables local electrochemical measurement such as local electrochemical impedance spectroscopy and cyclic voltammetry. Such a technique provides a unique way for performing the investigation of heterogeneities on electrode surfaces. The local electrochemical measurements on the artificially patinated surface have allowed distinguishing areas of different reactivity even when the analysis of the surface revealed a homogenous chemical composition of patina. Local measurements with the electrochemical microcell showed the presence of small defects on the patina layer that can be modelled by considering a hemispherical diffusion process at small active areas surrounded by larger less reactive domains.  相似文献   

7.
冲洗色谱特征点法测定表面分形维数初探   总被引:1,自引:0,他引:1  
在用非线性气相色谱测填料表面分形维数中,首次运用气固色谱(ECP法(elution by characteristic points method),测定了正戊烷、正已烷、正庚烷3种烷烃在不同颗粒大小的硅胶表面的吸附等温线,通过拟合Langmuir方程,求出单分子饱和吸附容量,并采用单分子层吸附的分形模型,求得硅胶的发形维数,提供了一种测定表面分形维数的新方法。  相似文献   

8.
The impedance of zinc-rich polymer coatings on steel in a 3-% NaCl solution is studied. The electrochemical behavior of the electrode is satisfactorily described by an equivalent circuit that contains a constant-phase element, which reflects fractal properties of the zinc surface in the binder. From the results of calculations of the circuit elements for metal-rich electrodes with different zinc contents computed are fractions of the active area of the surface of the coating and its fractal dimensionality.  相似文献   

9.
将制备的氧化锌纳米簇和金纳米颗粒分散在壳聚糖中并滴涂在玻碳电极表面,制备了氧化锌纳米簇-金纳米颗粒-壳聚糖复合膜修饰电极(Au-ZnO-CHIT/GCE)。采用循环伏安法研究了吗啡在修饰电极上的电化学行为。结果表明:吗啡在该修饰电极上出现了一个氧化峰,提出了用示差脉冲伏安法测定吗啡的方法。吗啡浓度在5.3×10-6~6.5×10-4mol.L-1范围内与氧化峰电流呈线性关系,检出限(3S/N)为1.8×10-6mol.L-1。修饰电极用于尿液中吗啡的测定,回收率在80.0%~99.6%之间。  相似文献   

10.
The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in ‘nanoera’. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials.  相似文献   

11.
The complex characteristics and mechanisms of aluminum pitting corrosion in a solar heating system were studied by the chemical immersion method and electrochemical techniques as well as fractal theory. The results showed that pitting corrosion of Al occurred in a tap water environment due to the local enrichment of Cl? ions. The higher the Cl? ions concentration, the more negative the critical pitting potential (Eb) of Al. A linear relationship between Eb and the logarithm of Cl? ions concentration was observed. The pitting corrosion mechanism of Al in neutral water was explained in terms of complexation corrosion theory. The corrosion surface images of aluminum immersed in tap water were captured and analyzed by image processing technique and box‐dimension method. The fractal characteristics of pit distribution, described by fractal dimension, have been identified. The fractal dimension of the pit distribution increased with the increase of immersion time and had the same trend as that of the weight loss. Fractal dimension can, thus, be used as an important parameter for quantitative evaluation of pitting corrosion of aluminum.  相似文献   

12.
A fractal analysis is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using (a) a single-fractal analysis and (b) a single- and a dual-fractal analysis. Case (b) represents a change in the binding mechanism as the reaction progresses on the biosensor surface. Relationships are presented for the binding rate coefficient(s) as a function of the fractal dimension for the single-fractal analysis examples. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. For example, for the binding of mutagenized and back-mutagenized forms of peptide E1037 in solution to salivary agglutinin immobilized on a sensor chip, the order of dependence of the binding rate coefficient, k, on the fractal dimension, D(f), is 13.2. It is of interest to note that examples are presented where the binding coefficient (k) exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist us in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficients (or affinities). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensors or other surfaces. Copyright 2000 Academic Press.  相似文献   

13.
Surface morphologies of supported polyethylene (PE) catalysts are investigated by an approach combining fractal with wavelet. The multiscale edge (detail) pictures of catalyst surface are extracted by wavelet transform modulus maxima (WTMM) method. And, the distribution of edge points on the edge image at every scale is studied with fractal and multifractal method. Furthermore, the singularity intensity distribution of edge points in the PE catalyst is analyzed by multifractal spectrum based on WTMM. The results reveal that the fractal dimension values and multifractal spectrums of edge images at small scales have a good relation with the activity and surface morphology of PE catalyst. Meanwhile the catalyst exhibiting the higher activity shows the wider singular strength span of multifractal spectrum based on WTMM, as well as the more edge points with the higher singular intensity. The research on catalyst surface morphology with hybrid fractal and wavelet method exerts the superiorities of wavelet and fractal theories and offers a thought for studying solid surfaces morphologies. Supported by the Chinese Petroleum & Chemical Corporation Development Department (Grant No. x504024)  相似文献   

14.
We have studied the self-assembly of thiol monolayers on high-area nanostructured gold surfaces. These surfaces are highly irregular with a fractal dimension close to 2.5. Auger electron spectroscopy and voltammetric data indicate that thiol self-assembly with a maximum surface coverage approximately 1/3 takes place, the same result as that found for smooth gold surfaces. Therefore, neither curvature effects, which would promote higher coverage, nor excluded volume effects, which would result in lower coverage, are present in these irregular surfaces. The high surface area of the bare electrodes exhibits a rapid surface decay in different liquid media that is hindered by alkanethiolate chemisorption. The presence of thiolate SAMs reduces markedly the mass transport surface diffusion of gold adatoms, hindering surface area decay and freezing the system in a metastable state for days. This effect cannot be explained by considering only hydrocarbon-hydrocarbon chain interactions, because it is also observed for ordered arrays of adsorbed S atoms. Therefore, interactions between ordered chemisorbed species at high coverage seem to be responsible for the observed behavior. The thiol-covered high-area metallic substrates can be used to efficiently anchor a large number of molecules, biomolecules, or nanostructures, improving the performance of SAM-based optical and electrochemical devices.  相似文献   

15.
采用石墨烯(RGO)作载体,凝血酶适体(TBA)作探针,凝血酶为目标蛋白,电化学阻抗谱(EIS)为检测技术,建立了检测蛋白质的新方法。由于RGO可增大电极有效表面积并提高电极表面电子传输速率以及TBA的特异性识别能力,此方法具有较高的灵敏度和良好的选择性。采用本方法检测凝血酶的线性范围为0.3~10 fmol/L,检出限为0.26 fmol/L。本研究将RGO应用于电化学适体传感器,证实了RGO修饰电极在电化学适体传感器领域中潜在的应用价值。  相似文献   

16.
The surface structure of modified silica powder has been studied by various experiments and simulations. In addition, the effect of surface structure on wettability has also been investigated. Nonporous silica powder was modified with n-and t-butyl alcohol. Two series of the modified silica surfaces were characterized by fractal dimension analysis from isotherms with some kinds of adsorptives. The fractal dimensions of the two series of modified surfaces were different from each other with an increase in modified ratio. The fractal dimension of the surface modified with t-butyl alcohol (t-modified surface) increased monotonously with butoxy group density. It is thought that the structure of the t-butoxy group is rigid and that the t-butoxy group cannot change its conformation. On the other hand, the variation of the surface fractal dimension value for the surface modified with n-butyl alcohol (n-modified surface), whose structure is flexible, was unique compared with the t-modified surface. Such discrepancy was assumed to be caused by the difference in the structure of the modifier and the assembled state of modifiers between the t- and n-modified surfaces. In order to investigate the variation of surface structure of the surface modified by the butoxy group with an increase in modified ratio, molecular dynamics simulations were performed. By comparing the results of these simulations with experimental results, it has been clarified that the variation in the mobility of the methyl group in the n-butoxy groups was closely related to the change in the surface fractal dimension value for the n-modified surface. It was then elucidated that this mobility change was caused by steric hindrance among the groups. Furthermore, the variation of conformation in the n-butoxy groups, which was obtained from molecular dynamics simulations, was in good agreement with the change in the wettability of the n-modified surface. It is suggested that the surface density of the modifier, the covering structure and the bulkiness significantly influence the wettability of the modified surface. Received: 6 April 1999 /Accepted in revised form: 24 August 1999  相似文献   

17.
The surface morphology of polyaniline (PAni) composite films was studied by using the fractal dimension concept. This work presents the utilization of the cyclic voltammetry and electrochemical impedance spectroscopy to determine the fractal dimension. The small angle X-ray scattering (SAXS) technique has been extensively used to investigate the structure of several materials and it was used here to verify the confidence of electrochemical methods by comparison. All techniques employed revealed that PAni/Silica and PAni/PVDF composites present surface fractals.  相似文献   

18.
D. Cakmak  T. Bulut  D. Uzun 《Electroanalysis》2020,32(7):1559-1570
This present study describes a pencil graphite electrode surface covered with Cu(II) and Fe(III) complexes based on Salophen derivative Schiff bases in acetonitrile solution containing LiClO4 as a supporting electrolyte. Cyclic voltammetry method was used for the surface modification procedure with 25 cycle at a sweep rate of 50 mV s?1. Some characterization methods were used to identify of the prepared modified surfaces including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Ultraviolet‐visible Spectroscopy (UV‐Vis), and Scanning Electron Microscopy/Energy Dispersive X‐ray Spectroscopy (SEM/SEM‐EDX). The catalytic activity of these modified surfaces on the electrochemical oxidation of catechol (CC) was investigated and they compared with each other. The results demonstrated that these modified electrodes showed perfect electrocatalytic activity on the catechol determination, however the modified electrode prepared with the Cu(II) complex has higher catalytic activity than this prepared with the Fe(III) complex thanks to its the lower detection limit.  相似文献   

19.
Surface-enhanced Raman spectroscopy (SERS) studies of electrode/solution interfaces are important for understanding electrochemical processes. However, revealing the nature of reactions at well-defined single crystal electrode surfaces, which are SERS-inactive, remains challenging. In this work, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used for the first time to study electrochemical adsorption and hydrogenation reactions at single crystal surfaces in nonaqueous solvents. A roughened Au surface was also studied for comparison. The experimental results show that the hydrogenation of adsorbed p-ethynylaniline (PEAN) on roughened Au electrode surfaces occurred at very negative potentials in methanol because of the catalytic effect of surface plasmon resonance (SPR). However, because “hot electrons” were blocked by the silica shell of Au@SiO2 nanoparticles and aprotic acetonitrile was an ineffective hydrogen source, surface reactions at Au(111) were inhibited in the systems studied. Density functional theory (DFT) calculations revealed that the PEAN triple bond opened, allowing adsorption in a flat configuration on the Au(111) surface via two carbon atoms. This work provides an advanced understanding of electrochemical interfacial processes at single crystal surfaces in nonaqueous systems.  相似文献   

20.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号