首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the sensitive detection of ammonia by wavelength modulated cavity enhanced infrared tunable diode laser absorption spectroscopy at 1994 nm. The spectrometer can measure a fractional absorption of ∼10-5 for an absorption pathlength of a few kilometers. The spectral resolution and sensitivity are sufficient to measure ammonia isotopomers (14NH3, 15NH3) in planetary atmospheres. The spectrometer is miniaturisable, so a future multiple-species version will be highly suitable for in situ planetary exploration and life-detection. PACS 42.62.Fi; 33.20.-t; 33.20.Ea  相似文献   

2.
We demonstrate that the ytterbium-doped medium Yb:YSO can provide laser oscillation in the 1000–1010 nm wavelength range under diode pumping around 980 nm. Ytterbium-doped Y2SiO5 crystal has been chosen for its high emission cross section around 1 m combined with a strong absorption line at 978 nm. We have developed an original pumping architecture that permits us to overcome problems due to the small difference between pump and laser wavelengths. In this way, laser emission continuously tunable in the 1000–1010 nm wavelength range has been obtained with more than 100 mW of output power. This kind of laser is the first step toward a metrological source around 500 nm stabilized on an I2 absorption line. Furthermore, 100 mW of laser light has been obtained at 998.5 nm, leading to a remarkably low quantum defect of 2.1%. PACS 42.55.Xi; 42.60.Pk; 42.72.Ai  相似文献   

3.
A very simple and inexpensive tunable semiconductor diode laser controller is designed for stable operation of the diode laser. The diode laser controller is stable within +/−8 μA and +/−10 mK, respectively. The noise spectrum of the current controller is studied by FFT analysis. We have used our home-made diode laser system in a tunable diode laser absorption spectrometer (TDLAS) to probe weak overtone transitions of water vapour molecule. The diode laser wavelength is coarsely tuned by changing the operating temperature to probe (2, 1, 1)←(0, 0, 0) band overtone transitions of water vapour within 818–835 nm. To demonstrate line shape study, seven transitions are scanned by ramping the drive current of the diode laser (at constant operating temperature) under different perturber (laboratory air) pressures within the sample cell. A balanced detector and a lock-in amplifier are used for phase sensitive detection purpose. Small current modulation amplitude, balanced detection and proper adjustment of the lock-in amplifier help to obtain a S/N ratio ranging from 100 to 7 using a small sample path length of 1.5 m. Experimentally obtained derivative spectrum is numerically integrated to reveal the original line shape and fitted with a nonlinear least squares fitting program to extract air broadening coefficients and line strength parameters. The spectroscopic line parameters are compared with the results from HITRAN database.  相似文献   

4.
We describe the application of a long-wavelength vertical-cavity surface-emitting laser (VCSEL) with extended tuning range to the detection of benzene vapor at atmospheric pressure. A benzene absorption feature centered at 1684.24 nm was accessed by reducing the heat sink temperature of a VCSEL designed for room-temperature operation to −55°C. This allowed us to increase the injection current and thus to extend a single-scan tuning interval up to 46.4 cm−1 or 13.2 nm around a central wavelength of 1687.4 nm. Five absorption lines of methane in the 5903–5950 cm−1 range could be acquired within single laser scans at a repetition rate of 500 Hz. A benzene absorption feature between 5926 and 5948 cm−1 was recorded for concentration measurements at atmospheric pressure using a single-pass 1.2 m absorption cell. A 50 ppmv mixture of CH4 in N2 was introduced into the cell along with benzene vapor to calibrate benzene concentration measurements. Benzene mixing ratios down to ∼90 ppmv were measured using a direct absorption technique. The minimum detectable absorbance and detection limit of benzene were estimated to be ∼10−4 and 30 ppmv, respectively. Using the wavelength modulation technique, we measured a second harmonic sensor response to benzene vapor absorption in air at atmospheric pressure as a function of modulation index. We conclude that a low-temperature monolithic VCSEL operating near 1684 nm can be employed in compact benzene sensors with a detection limit in the sub-ppm range.  相似文献   

5.
Extremely wide wavelength tuning ranges of up to ∼300 nm around 1.9 μm are theoretically predicted in a Tm-doped BaY2F8 crystal, on the basis of near-infrared measurements of emission and absorption cross sections. A tunability interval of 245 nm, from 1849 nm to 2059 nm, has been demonstrated by room-temperature laser experiments using a 8% Tm-doped crystal. PACS 42.55.Xi; 42.55.Rz; 42.60.Pk; 42.70.Hj; 42.60.Lh  相似文献   

6.
The development of a continuous wave (CW), thermoelectrically cooled (TEC), distributed feedback (DFB) laser diode based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) based on a 2f wavelength modulation (WM) detection technique. TDLAS was performed with a 100 m optical path length astigmatic Herriott cell. For an interference free C2H6 absorption line located at 2976.8 cm−1 a 1σ minimum detection limit of 240 pptv (part per trillion by volume) with a 1 second lock-in amplifier time constant was achieved. In addition, reliable and long-term sensor performance was obtained when operating the sensor in an absorption line locked mode.  相似文献   

7.
A tunable diode laser spectrometer has been employed to examine the 3rd overtone absorption lines of C2H4 at around 12 000 cm−1 (830 nm). The spectrometer sources are heterostructure AlGaAs tunable diode lasers operating “free-running”. By the aid of the wavelength modulation spectroscopy with the second harmonic detection technique and a Herriott type multipass cell 63 very weak absorption lines have been observed for the first time, with cross sections as low as 2 × 10−26 cm2/mol, equivalent to . The self-broadening coefficient has been measured for one of the most intense lines.  相似文献   

8.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

9.
Water vapor overtones pressure line broadening and shifting measurements   总被引:2,自引:0,他引:2  
By using a spectrometer having as source a commercial etherostructure Al x Ga1 − x As diode laser operating in “free-running mode”, line shape parameters of some water vapor ro-vibrational overtones at 820–830 nm have been measured at room temperature. These weak absorption lines have been detected by using the wavelength modulation spectroscopy technique with second-harmonic detection. The broadening and shifting coefficients have been obtained by fitting the collected second-harmonic absorption features while varying the pressure of different foreign gases.  相似文献   

10.
可调谐二极管激光吸收光谱技术是一种应用非常广泛的吸收光谱测量技术.利用宽带可调谐窄线宽光源进行吸收光谱测量的超光谱吸收技术可以在单次扫描中获取一段连续光谱的所有吸收数据,可大大提高可调谐二极管激光吸收光谱技术的数据信息容量和光谱诊断能力.分析了在2μm波段对水进行超光谱吸收测量时对激光器输出线宽的具体要求.利用掺铥光纤在2μm波段较宽的发射谱,采用可调谐法布里-珀罗滤波器和光纤可饱和吸收体相结合的技术方案搭建了一台宽带调谐窄线宽的2μm光纤激光器.获得了1840—1900 nm约60 nm范围的调谐光谱输出,激光器静态线宽仅为0.05 nm.利用该光源对空气中水在2μm波段的吸收光谱数据进行了超光谱吸收测量,在1856—1886 nm约30 nm的光谱范围内分辨了35条水的吸收谱线.通过对不同线宽条件下1870—1880 nm范围内的理论吸收光谱数据进行对比发现,测量数据无法有效分辨分别位于1873 nm和1877 nm处与强吸收线相邻的两条吸收谱线,且测量结果与激光线宽在0.08 nm条件下的HITRAN2012光谱数据库最为接近.这表明,在动态扫描过程中激光器的线宽得到了展宽.  相似文献   

11.
A tunable diode laser spectrometer has been employed to examine the unknown overtone absorption lines of NH3 around (760 nm). The spectrometer sources are commercially available heterostructure AlGaAs tunable diode lasers operating in the “free-running” mode. The detection of the lines has been possible by the use of the wavelength modulation spectroscopy and the second harmonic detection technique. A special algorithm has been used in order to fit the highly modulated absorption lines. The weakest observed resonances have absorption cross sections on the order of ?/molecule or ?/amagat. For some of the more intense lines self-, air-, N2-, He- and H2-broadening coefficients have been obtained at room temperature and also some shifting coefficients have been measured.  相似文献   

12.
Spectroscopic detection of the methane in natural air using an 800 nm diode laser and a diode-pumped 1064 nm Nd:YAG laser to produce tunable light near 3.2 µm is reported. The lasers were pump sources for ring-cavity-enhanced tunable difference-frequency mixing in AgGaS2. IR frequency tuning between 3076 and 3183 cm–1 was performed by crystal rotation and tuning of the extended-cavity diode laser. Feedback stabilization of the IR power reduced intensity noise below the detector noise level. Direct absorption and wavelength-modulation (2f) spectroscopy of the methane in natural air at 10.7 kPa (80 torr) were performed in a 1 m single-pass cell with 1 µW probe power. Methane has also been detected using a 3.2 µm confocal build-up cavity in conjunction with an intracavity absorption cell. The best methane detection limit observed was 12 ppb m (Hz.)–1/2.  相似文献   

13.
The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/24 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/24 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.  相似文献   

14.
By using a diode laser spectrometer based on a commercial heterostructure diode laser operating in free-running mode, line shape parameters of some ammonia ro-vibrational overtones at 790 nm have been measured at room temperature. These weak absorption lines have been detected by using the wavelength modulation spectroscopy technique with second-harmonic detection. The broadening and shifting coefficients have been obtained for ten absorption lines by fitting the collected second-harmonic absorption features and varying the pressure of different buffer gases. Received 13 February 2002 / Received in final form 18 September 2002 Published online 17 December 2002 RID="a" ID="a"e-mail: alex@ifam.pi.cnr.it  相似文献   

15.
High resolution diode laser spectroscopy has been applied to the detection of hydrogen sulphide at ppm levels utilizing different transitions within the region of the ν 1+ν 2+ν 3 and 2ν 1+ν 2 combination bands around 1.58 μm. Suitable lines in this spectral region have been identified, and absolute absorption cross sections have been determined through single-pass absorption spectroscopy and confirmed in the Doppler linewidth regime using cavity enhanced absorption spectroscopy (CEAS). The desire for a sensitive system potentially applicable to H2S sensing at atmospheric pressure has led to an investigation on suitable transitions using wavelength modulation spectroscopy (WMS). The set-up sensitivity has been calculated as 1.73×10−8 cm−1 s1/2, and probing the strongest line at 1576.29 nm a minimum detectable concentration of 700 ppb under atmospheric conditions has been achieved. Furthermore, pressure broadening coefficients for a variety of buffer gasses have been measured and correlated to the intermolecular potentials governing the collision process; the H2S–H2S dimer well depth is estimated to be 7.06±0.09 kJ mol−1.  相似文献   

16.
Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.  相似文献   

17.
A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel of the tapered diode narrows the spectrum and allows for tuning of the emitted spectrum in the range from 780 to 810 nm. The DFG process takes place intra-cavity in a high finesse diode pumped 1064 nm solid state Nd:YVO4 laser cavity, using periodically poled LiNbO3 as the nonlinear material. Based on this new approach, a tunable single-frequency output power exceeding 3 mW was obtained in the mid-IR tuning range from 2.9 to 3.4 ??m.  相似文献   

18.
High-power distributed-feedback (DFB) lasers for the wavelength range near 940 nm (i.e. about 10,600 cm−1) were used for line-broadening measurements of individual rotational-vibrational absorption lines of water vapour at atmospheric pressure using a minimalist set-up. The laser has a maximum output power larger than 500 mW. Over the whole power range from threshold to maximum power, it operates in single mode operation with a tuning range of 4.7 nm, i.e. 50 cm−1, at 20°C. With an emission line-width ≤2 MHz (0.66×10−4 cm−1), the device is well suited for high-resolution spectroscopy.  相似文献   

19.
A method for rapid wavelength tuning of an extended cavity diode laser (ECDL) is presented providing for high resolution, narrow bandwidth output over limited spectral regions. The method permits tuning over isolated spectroscopic features at repetition rates of tens of kHz, greatly exceeding conventional ECDL tuning speeds. In this paper we present high repetition rate laser induced fluorescence (LIF) spectroscopy of the 52P1/2 to 62S1/2 transition in indium at 410 nm, to demonstrate the technique. The presented ECDL design is very easy to implement, cheap and robust, as it employs no moving parts and can be used over all wavelength regions where FP diode lasers are available. This extends the usefulness of standard FP diode lasers to high speed sensing applications. Advantages and disadvantages of the technique are discussed. PACS 42.55.Px; 42.60.Fc; 42.62.Fi; 32.50.+d  相似文献   

20.
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min. Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1  W/Hz1/2. PACS 42.55.Wd; 42.65.Yj; 42.62.Fi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号