首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The paper studies the interaction of a spherical shock wave with an elastic circular cylindrical shell immersed in an infinite acoustic medium. The shell is assumed infinitely long. The wave source is quite close to the shell, causing deformation of just a small portion of the shell, which makes it possible to represent the solution by a double Fourier series. The method allows the exact determination of the hydrodynamic forces acting on the shell and analysis of its stress state. Some characteristic features of the stress state are described for different distances to the wave source. Formulas are proposed for establishing the safety conditions of the shell.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 94–104, September 2004.  相似文献   

12.
13.
14.
The classical problem of stability of a thin elastic cylindrical shell loaded by axial compressions forces is considered. The axially symmetric and non-axisymmetric buckling modes of isotropic and orthotropic shells are studied. In contrast to the traditional approach, the well-known expressions for the critical load are obtained by analyzing the equations for the shell behavior and are independent of the boundary conditions.  相似文献   

15.
16.
17.
S. P. Timoshenko Mechanics Institute, National Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 12, pp. 24–31, December, 1995.  相似文献   

18.
S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 2, pp. 29–33, February, 1995.  相似文献   

19.
20.
The plane unsteady problem of impact of a thin elastic cylindrical shell on the surface of an ideal incompressible liquid is considered. The initial stage of interaction between the body and the liquid when the stresses in the shell attain peak values is studied. The problem is treated in a linearized formulation and is solved numerically by the normal modes method within the framework of the Wagner approach. The numerical results agree with experimental data for various types of circular cylindrical shells made from mild steel. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 186–197, November–December, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号