首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article examines the substrate/coating interface of a coating deposited onto mild steel and stainless steel substrates using an ambient temperature blast coating technique known as CoBlast. The process uses a coincident stream of an abrasive blast medium and coating medium particles to modify the substrate surface. The hypothesis for the high bond strength is that the abrasive medium roughens the surface while simultaneously disrupting the passivating oxide layer of the substrate, thereby exposing the reactive metal that then reacts with the coating medium. The aim of this study is to provide greater insight into the coating/substrate bonding mechanism by analysing the interface between a hydroxyapatite coating on both mild and stainless steel substrates. The coating adhesion was measured via a tensile test, and bond strengths of approximately 45 MPa were measured. The substrate/coating interface was examined using transmission electron microscopy and selected area diffraction. The analysis of the substrate/coating interface revealed the presence of ultrafine grains in both the coating and substrate at interface associated with deformation at the interface caused by particle impaction during deposition. The chemical reactivity resulting from the creation of these ultrafine grains is proposed to explain the high adhesive strength of CoBlast coatings.  相似文献   

2.
造孔剂对电泳沉积制备多孔HA涂层及其生物活性的影响   总被引:1,自引:1,他引:0  
张岚  黄紫洋 《应用化学》2012,29(1):46-51
采用水热法制得的羟基磷灰石(HA)纳米粉体,分别与造孔剂葡萄糖(Glu)、壳聚糖(CS)、炭粉(C)3种微粒(<38.5 μm)配置成质量比1∶1的悬浮液,电泳沉积 烧结制备钛基多孔HA涂层,并对制得的3种多孔HA涂层在模拟体液浸泡前后的表面形貌、化学组成及物相变化进行表征。 结果表明,经700 ℃烧结处理后制得的3种多孔HA涂层在1.5倍人体模拟体液中浸泡5 d后,多孔HA涂层表面均被层状生长的碳磷灰石颗粒完全覆盖,颗粒直径在5~25 μm,说明这些多孔HA涂层均具有良好的生物活性。 其中以CS为造孔剂制得的多孔HA涂层结合强度最高,达19.5 MPa,有望开发成为新型的人骨植入生物陶瓷材料。  相似文献   

3.
两步电化学沉积技术制备功能陶瓷/金属复合镀层   总被引:2,自引:0,他引:2  
通过两步电化学沉积技术,在医用金属表面得到羟基磷灰石生物活性陶瓷/金属复合镀层.从含有硝酸钙和磷酸二氢氨的溶液中,首先通过恒流模式电化学沉积钙磷生物陶瓷;然后采用恒压模式,在多孔的生物陶瓷沉积层中嵌入金属骨架,从而得到具有良好结合力的羟基磷灰石/金属复合镀层.实验结果表明在复合镀层中作为骨架的金属镍含量约为31%时,复合镀层与基底合金之间的结合力达到21.2MPa.  相似文献   

4.
为了制得表面多孔且与基材结合强度高的羟基磷灰石(HA)涂层,实验中以正丁醇为分散介质,以SiO2粉末为添加剂,纯钛片为基材,电泳沉积制备羟基磷灰石/二氧化硅/壳聚糖/(HA/SiO2/CS)复合涂层,经后续热处理得到多孔HA/SiO2复合涂层,采用扫描电镜(SEM)、傅立叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)、万能材料试验机对涂层的表面形貌、组成、结构和结合强度进行测试和表征,并通过模拟体液(SBF)浸泡法对复合涂层的生物活性进行评价.结果表明:当悬浮液中的HA/SiO2/CS质量比为1∶1∶1时,制得的HA/SiO2/CS涂层经700℃热处理后获得的HA/SiO2复合涂层孔洞分布均匀,大孔孔径在10~15μm,小孔孔径在1~5μm;涂层与基材的结合强度达到25.5 MPa;多孔HA/SiO2复合涂层在SBF中浸泡7 d后,涂层表面碳磷灰石化;说明实验中添加SiO2所制得的多孔HA/SiO2复合涂层与钛基材结合强度高,且具有良好的生物活性.  相似文献   

5.
采用复合电沉积和电泳沉积两步法在钛基体上制备了Co-YSZ/HAp纳米复合涂层, 与只采用电泳沉积法在钛基体上制备纳米HAp单一涂层进行了比较研究.采用场发射扫描电镜、X 射线衍射和能量散射谱对复合涂层的微观形貌, 纳米HAp外层表面形貌, 晶相, 复合涂层的断面形貌及元素组成分布进行分析研究. 通过粘结-拉伸实验测定了涂层与基体的结合强度, 结果表明, Co-YSZ/HAp 纳米复合涂层与钛基体的结合强度明显高于纳米HAp 单一涂层与钛基体的结合强度, 说明复合涂层具有更好的力学性能.  相似文献   

6.
In this work, we describe a novel, simple microfluidic method for fabricating titania-silica core-shell microspheres. Uniform droplets of silica sol were dispersed into an oil phase containing tetrabutyl titanate via a coaxial microfluidic device. The titanium alkoxide hydrolyzed at the water-oil interface after the formation of the aqueous droplets. A gel shell containing the titanium hydroxide formed around the droplets, and the titania-silica core-shell microspheres were obtained after calcinations. The X-ray diffraction results show that titania coatings crystallized into a pure anatase structure. The scanning electron microscopy and energy-dispersive spectrometry characterization shows that the microspheres are monodispersed with uniform titania coating on the surface. The dispersity and size of the microspheres could easily be controlled by changing the microfluidic flow parameters. The titania content on the surface could be adjusted in the large range of 1.0-98.0 mol % by varying the continuous phase composition and the reaction time, and the structures of the core-shell microshperes could also be controlled.  相似文献   

7.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

8.
The present paper discusses the results of research into production of thermally stable composition coatings that have nanostructured inorganic non-metallic coating (NIN coating) of different compositions on zirconium alloy substrate as their part, as well as metals introduced into coating pores. Researchers identified optimal conditions of microplasma treatment, as well as composition of electrolyte solutions for each stage of composition material production. Was used to construct and analyze current-voltage characteristics obtained in the course of electrical impact upon samples. Phase and element composition of NIN coatings, surface morphology of NIN coatings and coatings with metal injected into were studied.  相似文献   

9.
Sol-gel-derived titania films were analyzed by temperature programmed desorption (TPD) and X-ray diffraction (XRD) techniques. The relationship between the TPD curves measured for two types of titania gel films and their crystal structures was investigated. On the basis of the analyses, a preparation process for a titania sol solution containing anatase nanocrystals was designed and developed. Using this process, a colloidal anatase titania sol solution was prepared by heating aqueous titanium hydroxide containing HCl at 60°C for 2 h. The nanocrystal structure of the titania films obtained by coating the sol on glass substrates was confirmed by TPD and XRD measurements.  相似文献   

10.
Owing to the biocompatibility of titanium surface, titanium implants are suitable substrates for microbial colonization and biofilm formation, which is still a serious clinical threat. Current research trends have been focused on the development of antibacterial coatings on titanium substrate or adhesion resistant surface. In our previous study, tetracycline (Tc) loaded chitosan‐gelatin (CSG) nanosphere coatings are successfully fabricated on titanium substrates via electrophoretic deposition. These coatings show nanosphere structure, and excellent antibacterial property in vitro. However, further in vitro and in vivo evaluation of the coatings is required for the future application. Therefore, in the present study, the authors investigate the coatings' mechanical, swelling and degradation property, in vitro cellular response to preosteoblast cells, and the antibacterial property in rabbits. Results show that Tc incorporation can improve the tensile bond strength of the coating, decrease the swelling ratio, and accelerate the degradation of the coating. Although high Tc concentration group exhibits cytotoxicity to MC3T3‐E1 cells, its in vivo antibacterial property is preferred, and shows better outcome than the prophylactic administration of Tc. Tc loaded CSG nanosphere coatings are suitable antibacterial coatings for titanium surface functionalization.

  相似文献   


11.
The sol-gel prepared titania (TiO2) has recently been demonstrated with a promising bioactivity [1]. It forms a chemical bond with the living bone in the body, although the bonding is not very strong. The present study is intended to improve the bone-bonding ability of the titania gel. The goal is achieved by impregnating the titania with hydroxyapatite (Ca10(PO4)6(OH)2). The processing route includes the following steps: (1) the titania sol solution was prepared; (2) the solution was mixed with fine hydroxyapatite (HA) powders; (3) the mixture was used to produce a coating on a commercial pure titanium (c.p. Ti) or Ti6A14V plate by a dip coating technique; (4) the coating was fired at 400–600°C. The resulting coating is a composite consisting of hydroxyapatite embedded in the matrix of the titania gel. Such HA-TiO2 composite coating is capable of inducing the hydroxyapatite precipitation from a simulated body fluid. When implanted in femurs of goat, the composite coating shows a bonding with bone. Its bone-bonding strength is twice as high as that of the pure titania gel coating. The results indicate that impregnating with hydroxyapatite is a promising way to increase the bioactivity of the titania gel.  相似文献   

12.
In this study, titanium surface modification by a thermal treatment using a polydimethylsiloxane (PDMS) coating was investigated. The surfaces of four titanium samples were surface treated by polishing, sandblasting, and coating with a PDMS with a thermal treatment at 800 and 1100 °C. The titanium surfaces were characterized by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy. The effect of the surface treatments on adhesion of resin to titanium was assessed by shear adhesion strength test. XPS analysis showed that there was a change of elemental composition of titanium surfaces after surface treatment. Binding energy shifts for Si2p and O1s were observed after sandblasting and thermally treated PDMS. Therefore, chemical states of Si and O were changed. Atomic force microscopy analysis revealed that the surface topography of the Ti samples was different, and surface roughness was increased after sandblasting and thermal treatment of PDMS coating. Shear adhesion strength test results showed that the adhesion between resin and titanium is affected by the treatment temperature of PDMS coating. The highest adhesion is obtained at 1100 °C (14.7 ± 1.57 MPa). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
在氧化铟锡( ITO)导电玻璃表面电泳沉积制备ZnO-C60和ZnO-MWCNT复合涂层电极,经后续热处理增强其结合强度,通过SEM观察2种电极复合涂层的表面形貌,并使用CHI 705电化学分析仪和PMI-E电致化学发光系统测定其光电性质.结果表明,ZnO-C60复合涂层电极具有较高的稳定性,在可见光辐照下,该电极显示...  相似文献   

14.
Hydroxyapatite coatings can be readily deposited on metal substrates by electrophoretic deposition. However, subsequent sintering is highly problematic owing to the fact that temperatures in excess of 1100°C are required for commercial hydroxyapatite powders to achieve high density. Such temperatures damage the metal and induce metal-catalysed decomposition of the hydroxyapatite. Furthermore, the firing shrinkage of the hydroxyapatite coating on a constraining metal substrate leads to severe cracking. The present study has overcome these problems using a novel approach: the use of aged nanoparticulate hydroxyapatite sols (lower sintering temperature) and a dual coating strategy that overcomes the cracking problem. Dual layers of uncalcined hydroxyapatite (HAp) powder were electrophoretically coated on Ti, Ti6Al4V and 316L stainless steel metal substrates, sintered at 875–1000°C, and characterised by SEM and XRD, and interfacial shear strength measurement. Dual coatings on stainless steel had an average high bond strength (about 23 MPa), and dual coatings on titanium and titanium alloy had moderate strengths (about 14 and 11 MPa, respectively), in comparison with the measured shear strength of bone (35 MPa). SEM and XRD demonstrated that the second layer blended seamlessly with the first and filled the cracks in the first. The superior result on stainless steel is attributed to a more appropriate thermal expansion match with hydroxyapatite, the thinner oxide layer, or a combination of these factors.  相似文献   

15.
Alumina‐former coatings have been known as the best surface engineering approach to combat high temperature corrosion in gas turbine industry. In this investigation, attempts have been made to obtain a titanium‐modified aluminide coating with improved protective properties. Modification has been achieved by introducing titanium in the coating composition by a two‐stage coating treatment; titanium coating and subsequent aluminising. The modified coatings were characterised and compared with simple aluminides by means of electron metallography, depth elemental profiling and x‐ray diffraction techniques. Experimental results indicated that pre‐titanising diffusion treatment is an effective route to modify chemical composition of simple aluminide coating. The final microstructure of the coating was β‐NiAl matrix with titanium‐bearing precipitates mainly distributed in near surface layers. The mechanism of the coating formation is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A technique for preparation of silver coatings on the surface of sodium borosilicate microspheres was examined. The strength and stability of the coatings were studied as influenced by pre-irradiated titanium(IV) tetrabutoxide employed as surface modifier.  相似文献   

17.
 For quantitative assessment of the properties of hard coatings there is an increasing demand for testing methods with high reliability of the test results, especially concerning the independence of the method and the comparability between different laboratories. This includes the knowledge about all the factors which influence the test procedure itself, determination of best testing conditions, testing of these conditions in round-robins to get a view of the comparability of results, and formulation of guidelines for standardization. In a European project several test methods for hard coatings on steel were investigated for this purpose and the elastic moduli of the coating and coating thickness were determined non-destructively by means of quantitative acoustic microscopy. This method and the instruments available had not yet been certified in the fields of coatings simply owing to the absence of standardised signal processing, followed by the determination of sound velocities and materials parameter extraction. For this purpose four laboratories carried out investigations and measurements on reference samples and on two types of hard coatings (titanium nitride and C-doped chromium) on M2 tool steel.  相似文献   

18.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The influence of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and mechanical properties of the alloy (substrate) + coating system is studied. The influence of the thickness, composition, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear resistance of alloy+coating compositions in a gas-abrasive flux of quartz sand is discussed. It is shown that the zirconium nitride coating provides the best protection for compressor blades made of titanium alloys, without any decrease in fatigue resistance of the alloys, and chromium carbide coating is the most appropriate protection for steel compressor blades.  相似文献   

20.
Powders and thin coatings of ceria and titania were synthesized from aqueous and solvent-based precursors. Thin coatings were deposited on polished 304 stainless steel coupons by dipping them in the appropriate sol-gel oxide precursors. The coatings were subsequently densified and crystallized at several hundreds of degrees. It was possible to obtain dense titania coatings by applying thin coatings of cerium dioxide prior to titania on stainless steel substrates. Underlayer ceria coatings proved to be pivotal in obtaining dense titania coatings and preserving the integrity of the stainless steel while going through the high temperature treatments. The effect of processing parameters such as the atmosphere of heat-treatment, and temperature on the microstructure and crystal structure of the films and powders of ceria and titania was investigated. X-ray diffraction was used to identify the crystal structure of films and powders upon heat-treatment. Electrochemical measurements in NaCl, and analytical techniques such as SEM and EDX were used to evaluate the corrosion performance and pitting morphology of coated samples. A composite coating of ceria and titania was able to prevent crevice corrosion and increase the pitting resistance of the 304 stainless steel relative to the uncoated substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号