首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation and structural characterization of the novel polyoxoanion [(alpha-1,2,3-P(2)W(15)Ti(3)O(62))(4)[mu(3)-Ti(OH)(3)](4)Cl](45-) (1 a; abbreviated to [TiO(6)](16); FW approximately 16 000) which consists of four tri-Ti(IV)-1,2,3-substituted alpha-Dawson substructures, four Ti(OH)(3) bridging groups, and one encapsulated Cl(-) ion, are described. A water-soluble, all-inorganic composition compound of the tetrameric Ti-O-Ti-bridged anhydride form, Na(x)H(45-x)[1 a].y H(2)O (1; x=16-19, y=60-70), which was afforded by the reaction of the tri-lacunary Dawson polyoxotungstate Na(12)[B-alpha-P(2)W(15)O(56)].19 H(2)O with an excess of TiCl(4) in aqueous solution, was obtained as analytically pure, homogeneous colorless crystals. Single-crystal X-ray structure analysis revealed that 1 a was an inorganic, giant "tetrapod"-shaped molecule (inscribed to a sphere with a diameter of approximately 32 A) with approximately T(d) symmetry, in which the 16 edge- and/or corner-shared TiO(6) octahedra were contained. This number of TiO(6) octahedra was larger than that found in other titanium(IV)-substituted polyoxotungstates. Complex 1 was characterized by complete elemental analysis, TG/DTA, FTIR, UV/Vis absorption, and solution ((31)P and (183)W) NMR spectroscopy. The longest wavelength band in the UV/Vis absorption spectra of 1 in water was attributed to the O-->Ti(IV) ligand-to-metal charge-transfer (LMCT) transition: the wavelength of the LMCT band increased linearly as the number of TiO(6) octahedra contained in the Keggin and Dawson polyoxoanions increased. The Ti(n) chromophores formed in the Keggin and Dawson polyoxotungstates are water-soluble analogues of solid TiO(2) or SrTiO(3) as light-semiconductors and photocatalysts.  相似文献   

2.
Synthesis and crystal structures of two new compounds, K2[CrCl5(H2O)] ( I ) and (NH4)2[CrCl5(H2O)] ( II ) are reported. Both compounds were prepared from chromium(VI) salts by two different methods and reaction pathways of these syntheses are suggested. The crystal structures of these two aquapentachlorochromates(III) have been determined from three dimensional X‐ray data collected at low temperature, 173 K. The two structures are isomorphous and their unit cell dimensions are quite similar. They are orthorhombic, space groups Pnma, with Z = 4. Both structures are composed of [CrCl5(H2O)]2? units held together by the counterion framework. The coordination around the chromium ion deviates from a regular octahedron due to the shorter equatorial chromium‐oxygen bond.  相似文献   

3.
Single crystals of [Yb(NCS)3(H2O)5] · H2O were synthesized from a salt‐metathesis reaction between stoichiometric amounts of aqueous solutions of Yb2(SO4)3 · 8H2O and Ba(NCS)2 · 3H2O driven by the precipitation of Ba(SO4), followed by isothermic evaporation of the filtered‐off solution at room temperature under atmospheric conditions. These crystals of the title compound came as transparent, colorless and hygroscopic needles. According to the X‐ray diffraction structure analysis [Yb(NCS)3(H2O)5] · H2O crystallizes in the monoclinic space group P21 with the lattice parameters a = 845.38(5), b = 719.26(4), c = 1219.65(7) pm, β = 103.852(3)° for Z = 2. The acentric crystal structure contains crystallographically unique Yb3+ cations, each surrounded by three thiocyanate anions, all grafting with their nitrogen atoms, and five water molecules forming a neutral [Yb(NCS)3(H2O)5] complex with square antiprismatic shape, completed by a sixth interstitial water molecule. ATR‐FT infrared and single‐crystal Raman spectra of [Yb(NCS)3(H2O)5] · H2O confirm these findings.  相似文献   

4.
From hydrothermal synthesis needle‐shaped crystals of [Ca3(C6H5O7)2(H2O)2] · 2H2O were obtained. The crystal structure was determined by single‐crystal X‐ray experiments and confirmed by powder data (P$\bar{1}$ (no. 2) a = 5.9466(4), b = 10.2247(8), c = 16.6496(13) Å, α = 72.213(7)°, β = 79.718(7)°, γ = 89.791(6)°, V = 947.06(13) Å3, Z = 2, R1 = 0.0426, wR2 = 0.1037). The structure was obtained from pseudo merohedrically polysynthetic twinned crystals using a combined data collection approach and refinement processes. The observed three‐dimensional network is dominated by eightfold coordinated Ca2+ cations linked by citrate anions and hydrogen bonds between two non‐coordinating crystal water molecules and two coordinating water molecules.  相似文献   

5.
6.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

7.
7Li, 31P, and 1H variable-temperature pulsed gradient spin-echo (PGSE) diffusion methods have been used to study ion pairing and aggregation states for a range of lithium salts such as lithium halides, lithium carbanions, and a lithium amide in THF solutions. For trityllithium (2) and fluorenyllithium (9), it is shown that ion pairing is favored at 299 K but the ions are well separated at 155 K. For 2-lithio-1,3-dithiane (13) and lithium hexamethyldisilazane (LiHMDS 16), low-temperature data show that the ions remain together. For the dithio anion 13, a mononuclear species has been established, whereas for the lithium amide 16, the PGSE results allow two different aggregation states to be readily recognized. For the lithium halides LiX (X = Br, Cl, I) in THF, the 7Li PGSE data show that all three salts can be described as well-separated ions at ambient temperature. The solid state structure of trityllithium (2) is described and reveals a solvent-separated ion pair formed by a [Li(thf)4]+ ion and a bare triphenylmethide anion.  相似文献   

8.
9.
The crystal structure of distrontium octacyanotungstate decahydrate, Sr2[W(CN)8] · 10H2O, was solved using X‐ray single crystal diffraction. The tungsten atom lies on a two fold axis. Eight cyanide anions create tetragonal antiprismatic coordination sphere of tungsten atom. The two edge‐sharing tetragonal antiprisms of [Sr(NC)3(OH2)5], create a dimer, [Sr2(CN)6(H2O)6(μ‐H2O)2], which lies on the inversion center. One symmetry independent water molecule is located in a void of 40 Å3. Vibrational (FT‐IR and FT‐Raman spectroscopic) behavior of main structural units is discussed. It was spectroscopically confirmed that the geometry of [W(CN)8]4– anion is slightly distorted from that corresponding to “free” anion. The number of observed bands is significantly lower than that expected for C2 point group.  相似文献   

10.
11.
12.
13.
The synthesis of the polynitroaromatic compound pentanitrobenzene was re‐examined by modern spectroscopic, structural and physicochemical methods. Originally prepared in 1979, this material could exhibit interesting properties as an oxygen‐rich energetic building block. The energies of formation were calculated with the GAUSSIAN program package and the detonation parameters were predicted using the EXPLO5 computer code. The performance data were determined and compared to the common oxidizer ammonium perchlorate. The crystal structure of pentanitrobenzene was determined by X‐ray crystallography, and those of 2,3,4,6‐tetranitroaniline and styphnic acid (trinitroresorcinol) were re‐determined.  相似文献   

14.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

15.
The first example of a heteropolyoxomolybdate containing palladium(IV) was isolated and characterized by X‐ray crystallography. The palladium(IV) hexamolybdate, K0.75Na3.75[PdMo6O24H3.5]·17H2O, was isolated from an aqueous solution at pH 4.5 in the space group P\bar{1} , a 10.790(2), b 12.244(3), c 14.086(3) Å, α 113.77(1), β 90.41(1),γ 107.86(1)°, and the structure was determined using X‐ray diffraction methods, refining to a residual of 0.0301 for 5334 reflections. A formal “[PdMo6O24H3]5–” subunit exhibits the basic Anderson structure, with two [PdMo6O24H3]5– cluster anions in the structure bridged by a hydrogen atom (formally an H+) situated on a center of symmetry to give a “[Pd2Mo12O48H7]9–” dimeric anion. The palladium(IV) atom occupies a slightly distorted octahedral environment, with Pd–O distances ranging from 1.968 to 2.009 Å.  相似文献   

16.
The first crystalline phosphorus oxonitride imide H3P8O8N9 (=P8O8N6(NH)3) has been synthesized under high‐pressure and high‐temperature conditions. To this end, a new, highly reactive phosphorus oxonitride imide precursor compound was prepared and treated at 12 GPa and 750 °C by using a multianvil assembly. H3P8O8N9 was obtained as a colorless, microcrystalline solid. The crystal structure of H3P8O8N9 was solved ab initio by powder X‐ray diffraction analysis, applying the charge‐flipping algorithm, and refined by the Rietveld method (C2/c (no. 15), a=1352.11(7), b=479.83(3), c=1820.42(9) pm, β=96.955(4)°, Z=4). H3P8O8N9 exhibits a highly condensed (κ=0.47), 3D, but interrupted network that is composed of all‐side vertex‐sharing (Q4) and only threefold‐linking (Q3) P(O,N)4 tetrahedra in a Q4/Q3 ratio of 3:1. The structure, which includes 4‐ring assemblies as the smallest ring size, can be subdivided into alternating open‐branched zweier double layers {oB,${2{{2\hfill \atop \infty \hfill}}}$ }[2P3(O,N)7] and layers containing pairwise‐linked Q3 tetrahedra parallel (001). Information on the hydrogen atoms in H3P8O8N9 was obtained by 1D 1H MAS, 2D homo‐ and heteronuclear (together with 31P) correlation NMR spectroscopy, and a 1H spin‐diffusion experiment with a hard‐pulse sequence designed for selective excitation of a single peak. Two hydrogen sites with a multiplicity ratio of 2:1 were identified and thus the formula of H3P8O8N9 was unambiguously determined. The protons were assigned to Wyckoff positions 8f and 4e, the latter located within the Q3 tetrahedra layers.  相似文献   

17.
18.
Lanthanide complexes of the chiral Dawson phosphotungstate [alpha(1)-P(2)W(17)O(61)](10-) were used to study the formation of diastereomers with optically pure organic ligands. The present work started with the full assignment of the (183)W NMR spectra of [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-) at different temperatures and concentrations, which allowed the structure of the dimerized form in aqueous solution to be established. Different enantiopure amino acids and phosphonic acids were screened as ligands. Both types allowed chiral differentiation by multinuclear NMR spectroscopy under fast-exchange conditions. Functional groups with a good affinity for the oxo framework of the polyoxometalate were identified, and maps of the interactions between L-serine and N-phosphonomethyl-L-proline with [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-) were established. This demonstrates the power of (183)W NMR spectroscopy to elucidate the molecular recognition of inorganic molecules by organic compounds. N-Phosphonomethyl-L-proline appears to be a convenient ligand to promote separation of the diastereomers and ultimately resolution of the enantiomers of [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-).  相似文献   

19.
The branched tripodal chloro‐methyl‐siloxanes of the general formula tBuSi[{OSiMe2}yOSiMe3–xClx]3 [x = 0–3; y = 0–2] were synthesized, starting with tert‐Butyl‐trisilanol ( 1 ). The treatment of 1 with the chloro‐methyl‐silanes (Me3–xSiClx+1) (x = 0–3) in the presence of triethylamine leads to the compounds tBuSi(OSiMe2Cl)3 ( 2 ), tBuSi(OSiMeCl2)3 ( 3 ) and tBuSi(OSiCl3)3 ( 4 ). The siloxanes 2 – 4 are colourless oily liquids, which can be purified by distillation. Their yields decrease with the number of chloro substituents. In the reaction of compound 2 with three equivalents of water the silantriol tBuSi(OSiMe2OH)3 ( 5 ) is generated which is used to create the branched tripodal chloro‐methyl‐siloxanes tBuSi(OSiMe2OSiMe3)3 ( 6 ), tBuSi(OSiMe2OSiMe2Cl)3 ( 7 ), tBuSi(OSiMe2OSiMeCl2)3 ( 9 ) and tBuSi(OSiMe2OSiCl3)3 ( 10 ). Compound ( 7 ) is only a side product with a yield of 25 %., The cyclic tBuSi[{(OSiMe2)2Cl}(OSiMe2)3O] ( 8 ) can be isolated and characterised. The transformation of the compound tBuSi(OSiMe2OSiMe2Cl)3 ( 7 ) into the trisilanol tBuSi(OSiMe2OSiMe2OH)3 ( 11 ) allows to prepare the tripodale siloxane tBuSi(OSiMe2OSiMe2OSiMe3)3 ( 12 ) in good yields., The reaction of tBuSi(OSiMe2Cl)3 ( 2 ) with tert‐butyl trisilanol 1 leads to the formation of bicyclic tBuSi(OSiMe2O)3SitBu ( 13 ). An X‐ray structure determination on 13 reveals a [3.3.3]‐bicycle with a C3 axis, which crystallizes in the cubic crystal system in the space group Pa . The reported compounds 2 – 13 were characterised by NMR‐ and IR spectroscopy ( 5 , 11 ) and show correct elemental analyses. The 29Si‐NMR‐data of the compounds show interesting trends with respect to the Si–O chain length and the chloro substistuents.  相似文献   

20.
During attempts to synthesize lanthanoid(III) fluoride oxoselenates(IV) with the simple composition MF[SeO3], not only Pr3F[SeO3]4, but also Pr5F[SiO4]2[SeO3]3 appeared as pale green crystalline by‐products in the case of praseodymium. Pr5F[SiO4]2[SeO3]3 crystallizes triclinically in space group P$\bar{1}$ (no. 2) with a = 701.14(5), b = 982.68(7), c = 1286.79(9) pm, α = 70.552(3), β = 76.904(3), γ = 69.417(3)° and Z = 2. The five crystallographically different Pr3+ cations on the general positions 2i show coordination numbers of eight and nine. [(Pr1)O8]13– and [(Pr2)O8]13– polyhedra are connected to$\bar{1}$ {[(Pr1, 2)2O12]18–} chains along the [100] direction. [(Pr3)O7F]12–, [(Pr4)O8F]14– and [(Pr4)O8F]14– polyhedra generate [F(Pr3, 4, 5)3O19]30– units about their central F anion in triangular Pr3+ coordination. These units form $\bar{1}$ {[F(Pr3, 4, 5)3O16]24–} strands, again running parallel to [100]. Their alternating connection with the $\bar{1}$ {[(Pr1, 2)2O12]18–} chains results in $\bar{1}$ {[Pr5O20F]26–} sheets parallel to the (001) plane. Like in the already known related compound Er3F[SiO4][SeO3]2, a three‐dimensional network $\bar{1}$ {[Pr5O17F]20–} is achieved without the contribution of both the tetravalent silicon and selenium components. However, two Si4+ and three Se4+ cations forming tetrahedral [SiO4]4– and ψ1‐tetrahedral [SeO3]2– units with all O2– anions guarantee the charge balance. The formation of Pr5F[SiO4]2[SeO3]3 was observed when praseodymium sesquioxide (Pr2O3: in‐situ produced from Pr and Pr6O11 in a molar ratio of 3/11:4/11),praseodymium trifluoride (PrF3) and selenium dioxide (SeO2) in 1:1:3 molar ratios were reacted with CsBr as fluxing agent for five days at 750 °C in evacuated fused silica (SiO2) ampoules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号