首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplexed white light interferometric fiber optic sensors matrix system was designed and demonstrated. In this system, a Mach–Zehnder optical path interrogating technique is used to demodulate each sensor of the sensors matrix. The sensors matrix consists of M×N sensing elements linked by a 1×M star coupler. The multiplexing capacity of the sensing scheme has been analyzed and an experimental result with a 2×2 sensors matrix was presented.  相似文献   

2.
In modern semiconductor and optics industries, there is a strong demand for a highly sensitive and non-contact surface profilometer. This paper describes a practical heterodyne surface profiling interferometer for on-line non-contact measurement which has been developed recently. The essential feature of the profilometer is a newly designed common-path configuration to minimize the effects caused by vibration, air turbulence and other environmental variations. A single-mode frequency-stabilized laser diode (780 nm) serves as the light source to make the whole system compact (total volume 250L×200W×100H mm). A powerful signal processing scheme is also developed, which includes three parts: automatic voltage control, phase measurement with wide range and automatic focusing control. All these make the repeatability and stability of the profiling interferometer greatly improved. The system has vertical resolution of 0.39 nm and lateral resolution of 0.73 μm. During approximately an hour, the stability is within 1.95 nm(3σ).  相似文献   

3.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 5×1016 ions/cm2 has been studied. The microstructural properties of the nanoclusters has been verified by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. Results of the investigation of nonlinear refraction by the off-axis Z-scan configuration were presented and the mechanisms responsible for the nonlinear response were discussed. Third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 8.7×10−8 esu at 532 nm and 6.0×10−8 esu at 1064 nm, respectively.  相似文献   

4.
We propose a new optical method for the determination of the rigidity modulus G of solid materials. The rigidity modulus is determined by measuring the twisted angle θ as a response of the material sample, depending on the applied force. The measuring of this twisted angle can be carried out by using an adapted polarimetric sensor. The effective measurement of rigidity modulus G for aluminum, Plexiglas and steel was experimentally obtained 1.4464×1010,0.99417×109 and 1.0395×1011 N m, respectively. The study has demonstrated the effective usefulness of our method for evaluating the rigidity modulus. A good agreement between the theoretical and experimental results was achieved.  相似文献   

5.
The theory and numerical aspects of the recently developed multidimensional version of the filter diagonalization method (FDM) are described in detail. FDM can construct various “ersatz” or “hybrid” spectra from multidimensional time signals. Spectral resolution is not limited by the time-frequency uncertainty principle in each separate frequency dimension, but rather by the total joint information content of the signal, i.e., Ntotal = N1 × N2 × × ND, where some of the interferometric dimensions do not have to be represented by more than a few (e.g., two) time increments. It is shown that FDM can be used to compute various reduced-dimensionality projections of a high-dimensional spectrum directly, i.e., avoiding construction of the latter. A subsequent paper (J. Magn. Reson. 144, 357–366 (2000)) is concerned with applications of the method to 2D, 3D, and 4D NMR experiments.  相似文献   

6.
An optical method for directly measuring the thickness of a thin transparent film has been proposed by means of multi-wave laser interference at many incident angles, and confirmed experimentally by means of equipment made on an experimental basis. Two methods are available: one can be used when an index of refraction of the film, a wavelength λ, and two successive angles of incidence at which the sinusoidal light intensity has minimum values, are known (Method I), and another can be used without an index of film refraction when three successive angles of incidence and a wavelength are known (Method II). The smallest measurable thickness is 1.43λ for Method I, and 2.5λ for Method II. The largest measurable thickness is about 100λ for both methods. The measurement error by means of numerical calculation is Δh/h−1.01×10−2, and that obtained experimentally with an angular resolution of incident light of 0.3° is Δh/h7×10−2 for Method I. The refractive index can also be measured by means of Method II.  相似文献   

7.
We present a comparative evaluation of the potential of several flame observables to yield a simplified measurement of the scalar dissipation rate (χ). The realization of the importance of this quantity for the structure of diffusion flamelets has led to brilliant experimental efforts targeted to its measurement, with a particular emphasis on χstoich, i.e., its value at the stoichiometric surface, which has been shown to control extinction. Such measurements require a significant amount of experimental resources, since they necessitate the simultaneous acquisition of multi-scalar data. The possibility of a simplified measurement stems from the realization that the related gradient of the mixture fraction scales as the inverse of an appropriately defined thickness of the mixing layer. In this paper, we investigate experimentally the utilization of several flame observables for the measurement of this thickness. In a flat, nitrogen diluted, counterflow, methane/oxygen diffusion flame, the scalar dissipation rate was first measured directly using line Raman imaging of major species and a N2-molecule based definition of the mixture fraction. Additionally, LIF measurements of the hydroxyl radical (OH) and formaldehyde (HCHO) as well as Raman measurements of carbon monoxide (CO) were performed across the flamelet. The precision of χstoich estimates based on the thickness of the layers of these three observables as well as the layers corresponding to [HCHO] × [OH] and [CO] × [OH] “overlap” zones was evaluated in terms of following the theoretically expected inverse-square-root dependence on strain rate. Also, the absolute thickness of these layers was recorded, since it may restrict the application of simplified techniques in turbulent flow fields.  相似文献   

8.
This work presents a scanning micro-interferometer, without moving parts, based on the well-known Mach-Zehnder geometry. The micro-system was obtained by using non-standard processes of planar technology on lithium niobate crystals, in particular the waveguide fabrication was obtained by using high energy ion implantation of medium light mass elements. The scanning effect without moving parts has been obtained by changing the refractive index of the optical waveguides by using electric field. The whole device is 60 mm long with a 0.5×1 mm2 cross section, weights only few grams and its power consumption lies in the milliwatt range. The performances were preliminary tested in the spectral window ranging from 0.4 to 1.0 μm. By using standard radiation sources, this micro-system demonstrated a spectral resolution suitable for detecting the characteristic spectral lines of a Xe-arc lamp on a 400 nm wide spectral window. In a further experiment we tested the performances of the microinterferometer for gas trace detection by using a calibrated NO2 optical gas cell. A sensitivity of about 10 ppb for NO2 detection, when suitable optical paths are used, was evaluated.  相似文献   

9.
The red system of CN molecule emitted by a nitrous oxide-acetylene flame has been measured between 11 000 and 4000 cm?1 with a high resolution Fourier Spectrometer. Fourteen bands of the Δv = +1, 0, ?1, and ?2 sequences are reported and analysed. The molecular constants of the 2Π and 2Σ+ states are determined using a computer program written to directly reduce the data in a single fit of the whole set of lines, a standard deviation of 0.0025 cm?1 was obtained. Some parameters reflecting small interactions are derived and discussed.  相似文献   

10.
A method of measuring flow-birefringence is reported. In this method, a circularly polarized light wave is transmitted through the flow-birefringent medium. The transmitted elliptically polarized wave is compensated by a Babinet-Soleil plate to convert it back into a circularly polarized wave. The state of circular polarization is confirmed using the rotating-analyser method. Measurements can be carried out with a sample having a fixed azimuth. The minimum detectable optical retardation angle was 5 × 10-3 degree. This corresponds to a birefringence of Δn = 1 × 10-10, when the optical path length of the sample cell is 100 mm.  相似文献   

11.
The growth and properties of Eu-induced one-dimensional reconstructions on vicinal Si(1 1 1) surface miscut in the [ ] direction have been studied by low energy electron diffraction and scanning tunneling microscope in the submonolayer range. The focus has been attended to the formation of single-domain structures and the influence of preparation parameters on the domain orientation. We have found the critical conditions for the preparation of a variety of Eu-induced single-domain (n×2) and (n×1) structures. In addition, a new intermediate phase showing the 9×1 periodicity between 3×2 and 2×1 phases is detected.  相似文献   

12.
A system for holographic interferometry using bacteriorhodopsin films as an erasable optical recording medium is presented. Bacteriorhodopsin is a photochromic protein found in archaebacteria. Bacteriorhodopsin films with an aperture of 90×90 mm are used for high-resolution lensless recording (5000 lines/mm). The holograms are recorded in reflection-type geometry in order to achieve a compact design. A frequency-doubled Nd : YVO4 laser, emitting at 532 nm, is used for recording and incoherent blue light is employed for photochemical erasure. The system is suitable for a variety of different interferometric techniques like double-exposure, time-averaging and real-time interferometry. As an example for the application of the BR-based non-destructive testing system the inspection of ceramic motor valves, made from silicone nitride (Si3N4), under mechanical load is reported.  相似文献   

13.
Finite element analysis has been used to characterise an all-fibre antenna using circular core D-fibre. The optical D-fibre carrying a transversely poled piezoelectric polyvinylidene fluoride polymer coating was modelled by using three-dimensional stress analysis. The response of the D-fibre antenna was determined over a wide frequency range from 1 to 800 MHz. The modelling predicts that the electric-field-induced strains will cause a phase shift of 2.43×10−5 rad/(V/m) per metre at 5 MHz. At frequencies higher than 8 MHz, the optical response is dominated by radial resonances of the D-fibre/coating composite. Using the simulation results, an electric-field-induced phase shift of 7.35×10−5 rad/(V/m) per metre has been obtained. An increase in phase modulation sensitivity by a factor of three compared to conventional circular fibre has been achieved by utilising the unique properties of the D-fibre structure. The D-fibre antenna has potential applications in areas such as EMC testing and radio-over-fibre networks where it provides a convenient means of optically generating radio signals.  相似文献   

14.
Intersubband transitions in quantum well have extremely large oscillator strengths and induce strong nonlinear effects in structures where inversion symmetry is broken, realized by growing AlGaAs quantum wells with asymmetrical A1 gradients. These compositionally asymmetrical multiquantum wells may thus be viewed as giant “quasimolecules” optimized for optimal nonlinearities in the mid infrared. Optical rectification as well as second harmonic generation have been measured in those structures using a continuous CO2 laser. At 10.6 μm the nonlinear coefficients are more than 3 orders of magnitude higher in these samples than for bulk GaAs (i.e. χ0(2) = 5.3 × 10−6m/V, χ2ω(2) = 7.2 × 10−7 m/V) and are in good agreement with theoretical predictions. We present more complex “pseudo-molecules” involving weakly coupled quantum wells. The optical rectification effects in these devices are so large χ0(2) = 1.6 × 10−3 m/V) that application to infrared detection may be envisioned.  相似文献   

15.
The effects of indium segregation on the valence band structures and the optical gain in GaInAs/GaAs quantum wells are theoretically investigated using 4×4 Luttinger–Kohn Hamiltonian matrix. The method for the band structure calculation is based on the finite difference method, then the optical gain is calculated using the density matrix approach. For segregation coefficient R less than 0.7, indium segregation has little influence on optical gain, but for segregation coefficient R more than 0.7, it has a significant influence on optical gain, the gain spectra can be blue-shifted with the increase of segregation coefficient R, and the peak gains are decreased as segregation coefficient R increases, which is mainly due to the reduction of the carrier population inversion.  相似文献   

16.
In the present paper, an abrupt heterojunction photodetector based on Hg1 − xCdxTe (MCT) has been simulated theoretically for mid-infrared applications. A semi-analytical simulation of the device has been carried out in order to study the performance ratings of the photodetector for operation at room temperature. The energy band diagram, carrier concentration, electric field profile, dark current, resistance–area product, quantum efficiency and detectivity have been calculated and optimized as a function of different parameters such as device thickness, applied reverse voltage and operating wavelength. The effect of energy band offsets in conduction and valance band on the transportation of minority carriers has been studied. The influences of doping concentration, electron affinity gradient and the pn junction position within heterostructure on potential barrier have been analyzed. The optical characterization has been carried out in respect of quantum efficiency, and detectivity of the heterojunction photodetector. In present model the Johnson–Nyquist and shot noise has been considered in calculation of detectivity. The simulated results has been compared and contrasted with the available experimental results. Results of our analytical-cum-simulation study reveal that under suitable biasing condition, the photodetector offers a dark current, ID ≈ 6.5 × 10−12 A, a zero-bias resistance–area product, R0A ≈ 11.3 Ω m2, quantum efficiency, η ≈ 78%, NEP = 2 × 10−12 W Hz1/2 and detectivity D* ≈ 4.7 × 1010 mHz1/2/W.  相似文献   

17.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

18.
A global analysis of the infrared spectrum of chloromethane involving the ground state and the 13 vibrational states lying up to 2600 cm−1 was recently achieved using high resolution Fourier transform spectra of pure isotopomers. More than 20 000 transitions (cold and hot bands) for each isotopomer 12CH335Cl and 12CH337Cl have been assigned and fitted with a standard deviation of about 3 × 10−4 cm−1 close to the experimental precison. As part of this global effort, improved ground state constants up to sextic centrifugal distortion terms have been determined for each isotopomer taking advantage of the numerous allowed and perturtation-allowed transitions simultaneously fitted using our global model. The axial constants could be determined from ΔK ≠ 0 combinations arising from rovibrational local resonances within Polyads 3 and 5.  相似文献   

19.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10−3 cm−1. The value of the parameter (αB − αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm−1, B″ = 0.68216(9) cm−1, DJ = 1.10(30) × 10−6 cm−1, αB = (B″ − B′) = 3.086(7) × 10−3 cm−1, and βJ = (DJDJ) = −3.24(11) × 10−7 cm−1. A value of αA = (A″ − A′) = 2.90(5) × 10−3 cm−1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

20.
We present a systematic investigation of the effects of oxygen growth pressure on the structural, optical, and electrical properties of In2O3:Cr thin films grown by pulsed laser deposition. X-ray diffraction analysis showed increases in lattice constant from 10.103 Å to 10.337 Å, and in particle size from 13.9 nm to 35.5 nm as the oxygen growth pressure increased from 7.5 × 10−6 Torr to 7.5 × 10−3 Torr, respectively. The observed shift in the X-ray diffraction peaks to lower angles was assumed to be caused by the reduction in the lattice defect density, precisely oxygen vacancies. The optical transparency increased with partial oxygen pressure (PO2), and an average transmittance of 85% was obtained at 7.5 × 10−3 Torr. The films are highly conducting with resistivity as low as 2 × 10−4 Ω cm and mobility as high as 133 cm/V s. Temperature dependent resistivity measurements in the 45 < T < 300 K temperature range reveal that films grown at 7.5×10−6PO2≤7.5×10−4 Torr exhibit negative temperature coefficient of resistivity (TCR) below approximately T = 60 K, T = 120 K, T = 160 K; then positive TCR in the temperature intervals 60 < T < 300 K, 120 < T < 300 K, and 160 < T < 300 K, respectively. This suggests that two disparate mechanisms govern electrical dc transport in the two temperature regions. Film grown at PO2 of 7.5 × 10−3 Torr displayed typical semiconducting behavior with negative TCR in the whole temperature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号