首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micromechanically based constitutive model for the elasto-viscoplastic deformation and texture evolution of semi-crystalline polymers is developed. The model idealizes the microstructure to consist of an aggregate of two-phase layered composite inclusions. A new framework for the composite inclusion model is formulated to facilitate the use of finite deformation elasto-viscoplastic constitutive models for each constituent phase. The crystalline lamellae are modeled as anisotropic elastic with plastic flow occurring via crystallographic slip. The amorphous phase is modeled as isotropic elastic with plastic flow being a rate-dependent process with strain hardening resulting from molecular orientation. The volume-averaged deformation and stress within the inclusions are related to the macroscopic fields by a hybrid interaction model. The uniaxial compression of initially isotropic high density polyethylene (HDPE) is taken as a case study. The ability of the model to capture the elasto-plastic stress-strain behavior of HDPE during monotonic and cyclic loading, the evolution of anisotropy, and the effect of crystallinity on initial modulus, yield stress, post-yield behavior and unloading-reloading cycles are presented.  相似文献   

2.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

3.
We present a systematic investigation on the strain hardening and texture evolution in high manganese steels where twinning induced plasticity (TWIP) plays a significant role for the materials' plastic deformation. Motivated by the stress–strain behavior of typical TWIP steels with compositions of Fe, Mn, and C, we develop a mechanistic model to explain the strain-hardening in crystals where deformation twinning dominates the plastic deformation. The classical single crystal plasticity model accounting for both dislocation slip and deformation twinning are then employed to simulate the plastic deformation in polycrystalline TWIP steels. While only deformation twinning is activated for plasticity, the simulations with samples composed of voronoi grains cannot fully capture the texture evolution of the TWIP steel. By including both twinning deformation and dislocation slip, the model is able to capture both the stress–strain behaviors and the texture evolution in Fe–Mn–C TWIP steel in different boundary-value problems. Further analysis on the strain contributions by both mechanisms suggests that deformation twinning plays the dominant role at the initial stage of plasticity in TWIP steels, and dislocation slip becomes increasingly important at large strains.  相似文献   

4.
We present a multiscale model for anisotropic, elasto-plastic, rate- and temperature-sensitive deformation of polycrystalline aggregates to large plastic strains. The model accounts for a dislocation-based hardening law for multiple slip modes and links a single-crystal to a polycrystalline response using a crystal plasticity finite element based homogenization. It is capable of predicting local stress and strain fields based on evolving microstructure including the explicit evolution of dislocation density and crystallographic grain reorientation. We apply the model to simulate monotonic mechanical response of a hexagonal close-packed metal, zirconium (Zr), and a body-centered cubic metal, niobium (Nb), and study the texture evolution and deformation mechanisms in a two-phase Zr/Nb layered composite under severe plastic deformation. The model predicts well the texture in both co-deforming phases to very large plastic strains. In addition, it offers insights into the active slip systems underlying texture evolution, indicating that the observed textures develop by a combination of prismatic, pyramidal, and anomalous basal slip in Zr and primarily {110}〈111〉 slip and secondly {112}〈111〉 slip in Nb.  相似文献   

5.
6.
A self-consistent model developed to describe the elastic–viscoplastic behavior of heterogeneous materials is applied to low carbon steels to simulate tensile tests at various strain rates in the low temperature range. The choice of crystalline laws implemented in the model is discussed through the viscoplastic flow rule and several strain-hardening laws. Comparisons between three work-hardening models show that the account of dislocation annihilation improves the results on simulations at large strains. The evolution of the Lankford coefficients and texture development are also successfully simulated. Some microstructural aspects of deformation such as the stored energy and the evolution of the flow rates are discussed. By including the dislocation density on each slip system as internal variable, intragranular heterogeneities are underscored.  相似文献   

7.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

8.
A large strain elastic-viscoplastic self-consistent (EVPSC) model for polycrystalline materials is developed. At single crystal level, both the rate sensitive slip and twinning are included as the plastic deformation mechanisms, while elastic anisotropy is accounted for in the elastic moduli. The transition from single crystal plasticity to polycrystal plasticity is based on a completely self-consistent approach. It is shown that the differences in the predicted stress-strain curves and texture evolutions based on the EVPSC and the viscoplastic self-consistent (VPSC) model proposed by Lebensohn and Tomé (1993) are negligible at large strains for monotonic loadings. For the deformations involving unloading and strain path changes, the EVPSC predicts a smooth elasto-plastic transition, while the VPSC model gives a discontinuous response due to lack of elastic deformation. It is also demonstrated that the EVPSC model can capture some important experimental features which cannot be simulated by using the VPSC model.  相似文献   

9.
The mechanisms that may lead to plastic instabilities are reviewed briefly, and their intimate connection with localization of plastic shear is emphasized. The combination of macro and micro experiments, ie, analysis of stress fluctuations and serrations, and of slip and shear band evolution during deformation, for investigations of these mechanisms is demonstrated with examples of LÜDERS and PORTEVIN-LeCHATELIER band propagation in single glide oriented crystals, and of shear band formation in predeformed mono- and polycrystals as well as amorphous materials. The problems connected with collective effects of the micro units of deformation (ie, dislocations in crystalline, local shear transformations in amorphous materials) are indicated, and the necessity to study the mechanism of transfer of slip (shear) to neighbouring regions is stressed.  相似文献   

10.
Summary A general approach to the problem of determination of elastoplastic behavior of metallic polycrystals at finite deformation is presented. The relation between moving dislocation density and global slip rate for grains is developed. Transition to grain response is obtained by introducing the hardening matrix. Field equations for heterogeneous elastoplastic metals are transformed into an integral equation, using Green functions technique. This allows to find the spin of the lattice related to texture formation.Scale transition is achieved by a self-consistent approximation of the integral equation. New results concerning BCC metals (sheet steel) are presented. They apply to tensile test, Lankford coefficient, initial and subsequent yield surfaces, and evolution of the internal state of the polycrystal: second-order residual stress, stored energy and texture evolution.  相似文献   

11.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

12.
A micromechanical theory is developed to predict the elastoplastic behavior of a two-phase alloy. Taking crystallographic slip to be the mechanism of plastic deformation, this theory also considers stress redistribution due to elastic and plastic heterogeneity in both phases. The corresponding self-consistent relation for two-phase plasticity was derived combining the spirit of Hill, Hutchinson, and Berveiller & Zaoui. It is found upon applications that both elastic and rigid particles may have a profound effect on the hardening behavior of two-phase systems. When applied to austenite-ferrite stainless steels, the theory also provides reasonable estimates as compared to experiments. The fictitious kink point commonly associated tith the continuum models is seen to be absent due to the gradual yielding of the constituent grains.  相似文献   

13.
The tensile deformation response and texture evolution of aluminum alloyed Hadfield steel single crystals oriented in the 〈1 6 9〉 direction is investigated. In this material, the strain hardening response is governed by the high-density dislocation walls (HDDWs) that interact with glide dislocations. A microstructure-based visco-plastic self-consistent model was modified to account for mechanical twinning in addition to the prevailing contribution of the HDDWs. Simulations revealed the contribution of twinning to the overall work hardening at the later stages of deformation. Moreover, both the deformation response and the rotation of the loading axis associated with plastic flow are successfully predicted even at the high-strain levels attained (0.53). Predicting the texture evolution serves as a separate check for validating the model, motivating its utilization in single and polycrystals of other alloys that exhibit combined HDDWs and twinning.  相似文献   

14.
Texturing of polycrystals under slip-dominated plastic deformation is driven by reorientation velocity fields that arise from the lattice spin that accompanies restricted slip. Here, the dynamics of reorientation velocity fields are analyzed to isolate mechanisms by which textures develop and dissipate. Two tools are introduced to enable this analysis: linear stability analysis to assess behavior of equilibrium orientations, and a parametrization of lattice spins to enable analysis of fields without equilibria. This toolkit is applied to face-centered cubic (FCC) polycrystals and sheds new insight into texture development under three representative deformation modes: plane strain compression, pure shear and simple shear.  相似文献   

15.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

16.
An elasto-plastic self-consistent (EPSC) polycrystal model is extended to account, in an approximate fashion, for the kinematics of large strains, rigid body rotations, texture evolution and grain shape evolution. In situ neutron diffraction measurements of the flow stress, internal strain, texture and diffraction peak intensity evolutions were performed on polycrystalline copper and stainless steel, up to true tensile strains of ε = 0.3. Suitably adjusted slip system hardening model parameters enable the model to quantitatively describe the flow stress of the polycrystalline aggregate. Quantitative predictions of the texture evolution and the internal strain evolution along the stress axis are good, while predictions of transverse internal strains (perpendicular to the tensile loading direction) are less satisfactory. The latter exhibit a large dispersion from grain to grain around a macroscopic average, and the implications of this finding for the interpretation of in situ neutron diffraction method are explored. Finally, as a demonstration of the applicability of the model to problems involving finite rotation, as well as deformation, simulations of simple shear were conducted which predict a texture evolution in agreement with published experimental data, and other modeling approaches as well.  相似文献   

17.
18.
赵伯宇  胡伟平  孟庆春 《力学学报》2021,53(5):1355-1366
材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.   相似文献   

19.
The effect of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.  相似文献   

20.
Non-linear deformation paths obtained using uniaxial tension followed by simple shear tests were performed for a 1050-O aluminum alloy sheet sample in different specimen orientations with respect to the material symmetry axes. In order to eliminate the time influence, the time interval between the first and second loading steps was kept constant for all the tests. Monotonic uniaxial tension tests interrupted during loading were used to assess the recovery that takes place during this time. In order to eliminate the influence of the initial plastic anisotropy and to compare the results as if the material hardening was isotropic, the flow stress was represented as a function of the plastic work. The behavior of the material after reloading was analyzed in terms of dislocation microstructure and crystallographic texture evolutions. For more quantitative assessment, the full constraints [Int. J. Plasticity 13 (1997) 75] and visco-plastic self-consistent [Acta Metall. Mater. 41 (1993) 2611] polycrystal models were used to simulate the material behavior in the non-linear deformation paths. Based on experimental and simulation results, the relative contributions of the crystallographic texture and dislocation microstructure evolution to the anisotropic hardening behavior of the material were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号