首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research supports recent efforts to provide an energetic approach to the prediction of stress–strain relations for single crystals undergoing single slip and to give precise formulations of experimentally observed connections between hardening of single crystals and separation of active slip-bands. Non–classical, structured deformations in the form of two-level shears permit the formulation of new measures of the active slip-band separation and of the number of lattice cells traversed during slip. A formula is obtained for the Helmholtz free energy per unit volume as a function of the shear without slip, the shear due to slip, and the relative separation of active slip-bands in a single crystal. This formula is the basis for a model, under preparation by the authors, of hardening of single crystals in single slip that is consistent with the Portevin-Le Chatelier effect and the existence of a critical resolved shear stress.  相似文献   

2.
Phenomenological higher-order strain-gradient plasticity is here presented through a formulation inspired by previous work for strain-gradient crystal plasticity. A physical interpretation of the phenomenological yield condition that involves an effect of second gradient of the equivalent plastic strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented.  相似文献   

3.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

4.
Two new formulations of micropolar single crystal plasticity are presented within a geometrically linear setting. The construction of yield criteria and flow rules for generalized continuum theories with higher-order stresses can be done in one of two ways: (i) a single criterion can be introduced in terms of a combined equivalent stress and inelastic rate or (ii) or individual criteria can be specified for each conjugate stress/inelastic kinematic rate pair, a so-called multi-criterion theory. Both single and multi-criterion theories are developed and discussed within the context of dislocation-based constitutive models. Parallels and distinctions are made between the proposed theories and some of the alternative generalized crystal plasticity models that can be found in the literature. Parametric numerical simulations of a constrained thin film subjected to simple shear are conducted via finite element analysis using a simplified 2-D version of the fully 3-D theory to highlight the influence of specific model components on the resulting deformation under both loading and unloading conditions. The deformation behavior is quantified in terms of the average stress-strain response and the local shear strain and geometrically necessary dislocation density distributions. It is demonstrated that micropolar single crystal plasticity can qualitatively capture the same range of behaviors as slip gradient-based models, while offering a simpler numerical implementation and without introducing plastic slip rates as generalized traction-conjugate velocities subject to an additional microforce balance.  相似文献   

5.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

6.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

7.
The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor is explored starting from a quadratic ansatz. Rank one and logarithmic dependencies are then envisaged based on considerations from the statistical theory of dislocations. The rele- vance of the presented free energy potentials is evaluated from the corresponding analytical solutions of the periodic two-phase laminate problem under shear where one layer is a single crystal material undergoing single slip and the second one remains purely elastic.  相似文献   

8.
9.
基于率相关的晶体塑性滑移理论,论文考虑晶体内部塑性变形产生的热以及快速热冲击作用下温度急剧变化产生热应力的热-力双向耦合效应,建立起微观单晶的瞬态热-弹-塑性耦合模型,推导出与温度有关的剪应变率和弹塑性切模量公式.根据论文建立的模型,对ABAQUS软件进行二次开发[1],数值模拟出<001>/{100}单晶Cu在单轴拉伸状态下的应力、应变与温度的关系和弹性模量的变化,结果如下:轴向应力随温度升高先呈线性增加再呈非线性减小,轴向应变随温度增加而增加;弹性模量随塑性变形的增加而降低,与分子动力学模拟的趋势[2]是一致的.数值实验表明,论文建立的模型和算法是正确合理的,且计算量远远小于分子动力学模拟.  相似文献   

10.
A shear band bifurcation analysis for a multiply slipping ductile single crystal is presented. The crystal is rate independent, and crystallographic slip is governed by Schmid's law. Attention is focused on double slip in a tensile deformation, so that comparison with previous studies is feasible. The results, which consider the rigid-plastic and elastic-plastic cases separately, show several qualitative features in agreement with experiment and with earlier analytical work based on a plane strain model. The shear band orientations exhibit the expected tendency, but the critical strain hardening values obtained here, while positive, are quite low. The present results also indicate the ready availability of non-uniform slip patterns, or ‘patchy slip’, a phenomenology consistent both with experimental observations and recent numerical studies.  相似文献   

11.
In a recent publication, we derived the mesoscale continuum theory of plasticity for multiple-slip systems of parallel edge dislocations, motivated by the statistical-based nonlocal continuum crystal plasticity theory for single-glide given by Yefimov et al. [2004b. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity simulations. J. Mech. Phys. Solids 52, 279-300]. In this dislocation field theory (DiFT) the transport equations for both the total dislocation density and geometrically necessary dislocation (GND) density on each slip system were obtained from the Peach-Koehler interactions through both single and pair dislocation correlations. The effect of pair correlation interactions manifested itself in the form of a back stress in addition to the external shear and the self-consistent internal stress. We here present the study of size effects in single crystalline thin films with symmetric double slip using the novel continuum theory. Two boundary value problems are analyzed: (1) stress relaxation in thin films on substrates subject to thermal loading, and (2) simple shear in constrained films. In these problems, earlier discrete dislocation simulations had shown that size effects are born out of layers of dislocations developing near constrained interfaces. These boundary layers depend on slip orientations and applied loading but are insensitive to the film thickness. We investigate the stress response to changes in controlled parameters in both problems. Comparisons with previous discrete dislocation simulations are discussed.  相似文献   

12.
The heterogeneity of deformation in ductile FCC single crystals is investigated by both numerical simulations and an analytic approach. The constitutive behaviour is based on a generalized storage recovery model and takes into account the interactions between slip systems previously obtained by dislocation dynamics simulations. In biaxial stretching, the simulations show the activation of a large number of slip systems and their localization in mutually excluding zones. As a result, a microstructure of lamellar type is formed in the early stages of the deformation. These numerical results are complemented by a linear stability analysis showing that the heterogeneous deformation pattern is triggered by instability modes of the single crystal. Furthermore, the interaction matrix is playing a key role as the partition is found to originate from slip system interactions. The partition is driven by the strongest interaction, which is in most cases the collinear interaction. A comparison with an experimental study in simple shear yields useful information about how to check the respective strength of some interactions. The collinear interaction is not involved in that case, but its effect can be verified by reproducing the experiment on a crystal with a different orientation.  相似文献   

13.
The relationships between a slip system in the parent lattice and its transform by twinning shear are considered in regards to tangential continuity conditions on the plastic distortion rate at twin/parent interface. These conditions are required at coherent interfaces like twin boundaries, which can be assigned zero surface-dislocation content. For two adjacent crystals undergoing single slip, relations between plastic slip rates, slip directions and glide planes are accordingly deduced. The fulfillment of these conditions is investigated in hexagonal lattices at the onset of twinning in a single slip deforming parent crystal. It is found that combinations of slip system and twin variant verifying the tangential continuity of the plastic distortion rate always exist. In all cases, the Burgers vector belongs to the interface. Certain twin modes are only admissible when slip occurs along an 〈a〉 direction of the hexagonal lattice, and some others only with a 〈c + a〉 slip. These predictions are in agreement with EBSD orientation measurements in commercially pure Ti sheets after plane strain compression.  相似文献   

14.
A viscoplastic constitutive model for Hastelloy-X single crystal material is developed based on crystallographic slip theory. The constitutive model was constructed for use in a viscoplastic self-consistent model for isotropic Hastelloy-X polycrystalline material, which has been described in a recent publication. It is found that, by using the slip geometry known from the metallurgical literature, the anisotropic response can be accurately predicted. The model was verified by using tension and torsion data taken at 982°C (1800°F). The constitutive model used on each slip system is a simple unified visoplastic power law model in which weak latent interaction effects are taken into account. The drag stress evolution equations for the octahedral system are written in a hardening/recovery format in which both hardening and recovery depend on separate latent interaction effects between the octahedral crystallographic slip systems. The strain rate behavior of the single crystal material is well correlated by the constitutive model in uniaxial and torsion tests, but it is necessary to include latent information effects between the octahedral slip systems in order to obtain the best possible representation of biaxial cyclic strain rate behavior. Finally, it was observed that the single crystal exhibited dynamic strain aging at 871°C (1600°F). Similar dynamic strain aging occurs at 649°C (1200°F) in the polycrystalline version of the alloy.  相似文献   

15.
An algorithm for single crystals was developed and implemented to simulate plastic anisotropy using a rate-dependent slip model. The proposed procedure was a slightly modified form of single crystal constitutive model of Sarma and Zacharia. Modified Euler method, together with Newton-Raphson method was used to integrate this equation which was stable and efficient. The model together with the developed algorithm was used to study three problems. First, plastic anisotropy was examined by simulating the crystal deformation in tension and plane strain compression, respectively. Secondly, the orientation effect of some material parameters in the model and applied strain rate on plastic anisotropy for single crystal also is investigated. Thirdly, the influence of loading direction on the active slip system was discussed.  相似文献   

16.
Within continuum dislocation theory the plane constrained shear of a single crystal strip with two active slip systems is considered. An analytical solution is found for symmetric double slip which exhibits the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effects. Comparison with discrete dislocation simulations shows good agreement between the discrete and continuum approaches. Numerical procedures in the general case of non-symmetric double slip are proposed.  相似文献   

17.
In this article, a set of inelastic constitutive equations of polycrystalline metals is derived by combining a finite deformation kinematics of single crystal component, and a shear stress-shear strain relation of slip system based on a thermoactivated motion of dislocation. Interactions among grains are incorporated by “constant deformation gradient assumption.” The forms of these equations are rather simple internal variable theory types. By using these equations, some fundamental effects of grain rotations on inelastic behaviors of polycrystalline metals in a finite deformation range under complex loading and elevated temperature conditions are demonstrated. Some comments are given on a problem of plastic spin tensor.  相似文献   

18.
We study plane strain dynamic thermomechanical deformations of an fcc single crystal compressed along the crystallographic direction [010] at an average strain rate of 1000 sec−1. Two cases are studied; one in which the plane of deformation is parallel tothe plane (001) of the single crystal, and another one with deformation occuring in the plane (101&#x0304;) of the single crystal. In each case, the 12 slip systems are aligned symmetrically about the two centroidal axes. We assume that the elastic and plastic deformations of the crystal are symmetrical about these two axes. The crystal material is presumed to exhibit strain hardening, strain-rate hardening, and thermal softening. A simple combined isotropic-kinematic hardening expression for the critical resolved shear stress, proposed by Weng, is modified to account for the affine thermal softening of the material. When the deformation is in the plane (001) of the single crystal, four slip systems (111)[11&#x0304;0], (111&#x0304;)[11&#x0304;0], (11&#x0304;;1&#x0304;;)[110], and (11&#x0304;1)[110] are active in the sense that significant plastic deformations occur along these slip systems. However, when the plane of deformation is parallel to the plane (101&#x0304;;) of the single crystal, slip systems (11&#x0304;;1)[110], (11&#x0304;1)[011], (111)[11&#x0304;0], and (111)[01&#x0304;1] are more active than the other eight slip systems. At an average strain of 0.0108, the maximum angle of rotation of a slip system within a shear band, about an axis perpendicular to the plane of deformation, is found to be 20.3° in the former case, and 22.9° in the latter.  相似文献   

19.
Substructure models for vein matrix and persistent slip band (PSB) structures are extracted from a uniaxial mixtures model that was developed to simulate cyclic loading experiments on nickel single crystals oriented for single slip. Reverse magnetostriction is included as well. These substructure models are implanted in a single crystal plasticity framework with fully anisotropic elasticity. The resulting constitutive models are incorporated in finite element models to simulate the process of PSB macroband formation and propagation. Perturbation elements (PEs), elements assigned with PSB properties, are used as the loci for PSB macroband nucleation. Transition of elements with vein matrix properties to elements with PSB properties is triggered at integration points by a shear stress criterion applied on slip systems. The resulting finite element models successfully demonstrate the process of PSB formation and propagation, and plastic strain amplitude partitioning between vein matrix and PSB macrobands. The effect of model boundary constraints, strain increment dependence, mesh sensitivity, PE distribution, specimen axis misorientation, and PSB volume fraction generated is examined.  相似文献   

20.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号