首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barenblatt and Botvina with elegant dimensional analysis arguments have elucidated that Paris’ power-law is a weak form of scaling, so that the Paris’ parameters C and m should not be taken as material constants. On the contrary, they are expected to depend on all the dimensionless parameters of the problem, and are really “constants” only within some specific ranges of all these. In the present paper, the dimensional analysis approach by Barenblatt and Botvina is generalized to explore the functional dependencies of m and C on more dimensionless parameters than the original Barenblatt and Botvina, and experimental results are interpreted for a wider range of materials including both metals and concrete. In particular, we find that the size-scale dependencies of m and C and the resulting correlation between C and m are quite different for metals and for quasi-brittle materials, as it is already suggested from the fact the fatigue crack propagation processes lead to m=2-5 in metals and m=10-50 in quasi-brittle materials. Therefore, according to the concepts of complete and incomplete self-similarities, the experimentally observed breakdowns of the classical Paris’ law are discussed and interpreted within a unified theoretical framework. Finally, we show that most attempts to address the deviations from the Paris’ law or the empirical correlations between the constants can be explained with this approach. We also suggest that “incomplete similarity” corresponds to the difficulties encountered so far by the “damage tolerant” approach which, after nearly 50 years since the introduction of Paris’ law, is still not a reliable calculation of damage, as Paris himself admits in a recent review.  相似文献   

2.
The present study investigates the microstructural size effect on the strength of a bar under axial loading, and on the toughness and crack growth of a beam under three-point bending within the framework of strain gradient elasticity. The gradient responses have been found considerably tougher as compared to the classical theory predictions and the observed deviation increases with increasing values of the non-dimensional parameter g/L (microstructural length over structural length). Based on the analytical solution of the strain energy release rate for the three-point bending case, a new, simple and universal, strain gradient elasticity, brittle fracture criterion and a new, size adjusted fatigue crack growth law have been established. Finally, the analytical predictions of the current modeling compare well with previous experimental data, based on three-point bending tests on single-edge notched concrete beams.  相似文献   

3.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

4.
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during many cycles, as severe mesh distortion at the crack-tip results from the huge geometry changes developing during the cyclic plastic straining. In the present numerical studies, based on an elastic-perfectly plastic material model, crack growth computations are continued up to 200 full cycles by using remeshing at several stages of the plastic deformation. Three different values of the load ratio R=Kmin/Kmax are considered. It is shown that the crack-tip opening displacement, CTOD, typically undergoes a transient behaviour, with no crack closure during many cycles, before a steady-state cycling with crack closure at the tip starts to gradually develop.  相似文献   

5.
Brittle materials randomly reinforced with a low volume fraction of strong, stiff and ductile fibers are considered, with specific reference to fiber-reinforced cements and concrete. Visible cracks in such materials are accompanied by a surrounding damage zone – together these constitute a very complex “crack system”. Enormous effort has been put into trying to understand the micromechanics of such systems. Almost all of these efforts do not deal with the “crack system” propagation behavior as a whole. The propagation process of such a “crack system” includes propagation of the visible crack and the growth of the damage zone. Propagation may take place by lengthening of the visible crack together with the concomitant lengthening of the surrounding damage zone, or simply by broadening of the damage zone while the visible crack length remains unchanged – or simultaneously by growth of both types. A phenomenological completely theoretical model (for an ideal material) is here proposed which can serve to examine the propagation process by means of energy principles, without recourse to the microscopic details of the process. An application of this theoretical approach is presented for the case of a damage zone evolving with a rectangular shape. This shape is chosen because it is expected that it will illustrate the nature of damage evolution and because the computational procedure necessary to follow the growth is the most straightforward.  相似文献   

6.
Fatigue tests on notched steel plates reinforced by composite patch showed that the application of carbon fiber reinforced polymers (CFRP) strips with pretension of the overlays prior to bonding. This resulted in a significant amount of additional fatigue life. In particular, the pre-tension produces a compressive field in the steel plate which reduces the stress ratio that enhances crack growth retardation. The fatigue crack propagation rate is postulated to be a function of the effective strain energy density factor range. Fatigue crack growth data showed that standard crack growth retardation model cannot be used to evaluate the minimum effective stress. Hence, an ad hoc plasticity model is introduced and validated using experimental results. The proposed technique is an extension of the well know Newman’s model. The bridging effect due to the reinforcing strips is analytically modeled in order to estimate the reduction of crack opening displacement and finally the magnification of the crack growth retardation. Numerical and experimental results match well and show a significant influence of the pre-tension level on the expected fatigue crack growth rate of a reinforced steel plate.  相似文献   

7.
The behavior of crack growth for the fatigue damage accumulation near tip where damage is most severe is analyzed. Fatigue life is assessed for the welded members of bridges under traffic loading. Two parts are considered. They consist of the development of a fatigue damage accumulation model for welded bridge members and a method for calculating the stress intensity factor that is needed for evaluating the fatigue life of welded bridge members with cracks. Based on the concept of continuum damage accumulation and fatigue and fatigue crack growth relations, results are obtained to describe the relationship between the cracking count rate and the effective stress intensity factor. Crack growth and fatigue life are found for two types of welded members assisted by using fatigue experimental results. The stress intensity factors are modified by correcting for the geometric shape of the welded members in order to reflect the influence of the weldment and geometry. This is accomplished via the stress intensity factor. The calculated and measured fatigue lives were generally in good agreement for the initial cracking conditions of two types of welded members widely used in steel bridges.  相似文献   

8.
Electric-field-induced fatigue crack growth in pre-cracked PZT ferroelectric ceramics is experimentally investigated in this work. It is found that the crack open and close under an alternating electric field is a major mechanism of crack propagation. The experimental results also show that the frequency, waveform, as well as the amplitude ratio, of the electric loading, play important roles in electric-field-induced fatigue cracking. Empirical formulations of fatigue crack propagation rates are obtained based on the experimental results. It is revealed that the crack grows at a nearly constant rate when the loading frequency is below 100 Hz. However, with the increase of the loading frequency over 125 Hz, the crack propagation rate diminishes rapidly.  相似文献   

9.
The material body considered in this work consists of multiphases. Digital imaging data are taken as the input to specify the configuration and composition of the specimen. Meshless method is demonstrated as a superior numerical tool to analyze crack initiation and propagation in multiphase material. A fracture criterion, based on the ratio of the opening stress over the material toughness distributed in front of the crack tip, is proposed to determine the direction of crack propagation of mixed mode fracture problem in multiphase material. Numerical results are presented and discussed.  相似文献   

10.
Elastic–plastic solutions of an anti-plane crack in an infinite body are used in conjunction with a continuum damage model to describe the conditions necessary for the onset of crack instability, fatigue crack propagation due to cyclic loading, and rates of crack growth due to time dependent events. A power law relates the stress to the strain of the material. The damage, which invokes nucleation, growth and coalescence of microvoids due to elevated strain, is confined to the plastic zone surrounding the crack tip. For applied loading below the yield stress, the small-scale and large-scale yielding solutions are used to determine the influence of strain hardening on crack instability and failure. Crack growth due to cyclic loading and time-dependent deformations are studied using the small-scale yielding solution of the deformation theory of plasticity.  相似文献   

11.
A moving boundary model is presented for crack nucleation and growth from surface flaws. It concerns with chemical attack that results in material dissolution. A controlling mechanism for evolution is the rupture of a brittle corrosion-protective film that is built up along the corroding surface. The evolution rate is a function of the degree of protective film damage caused by the surface straining. The problem is formulated for an elastic body containing a single and double pits. Low-frequency cyclic loading is considered. Numerical solution is proposed. The behaviours of a growing crack and of two competing cracks are described. Stages of incubation, blunting and steady-state growth characterise a single crack evolution. The steady-state growth rate is found independent of the initial geometry. Stages of independent growth, interactive growth and arrest of one crack characterise the evolution of two competing cracks. The lengths of the arrested cracks are presented as functions of the ratio between the pit depth for a series of different distances between the pits. It is emphasized that the solutions correspond to a homogeneous material. Further work is required to account for the material microstructure.  相似文献   

12.
The present attempt proposes a predictive approach of the fatigue crack growth (FCG) behavior of a lug-type joint used in an aeronautic context. The crack tip residual stress distribution and material dispersions are considered. The developed approach was implemented by coupling the Extended Finite Element Method (XFEM), the Residual Corrected Stress Intensity Factor (RC-SIF), developed by the authors, and the Monte Carlo simulation (MCS) method. The Lemaitre–Chaboche model, developed upon the ABAQUS commercial code, was considered for characterizing material behavior. The developed approach treats FCG life by considering the stochastic behavior of material parameters and the crack tip residual stress field during propagation. Comparing with experimental data, the proposed approach exhibits a good ability in evaluating the FCG reliability of a cracked lug-type joint subjected to different loading conditions. The iso-probabilistic PaN curves can be used as an efficient tool for ensuring the safety behavior of cracked components.  相似文献   

13.
This paper discusses a computationally efficient method for determining the behaviour of complex structures containing three-dimensional cracks. A simple method is presented for calculating the mode I stress intensities for semi-elliptical cracks emanating from the saddle point of two intersecting tubular members. This method, which gives results in good agreement with published values, uses the finite element technique, but does not require the crack to be modelled explicitly. The technique is then used, in conjunction with FASTRAN II, to study fatigue crack growth and the results are compared to experimental data. Good agreement is achieved between both the predicted and measured fatigue crack growth and the evolution of the crack aspect ratios.  相似文献   

14.
A model for crack growth is proposed based on studies of the variation in the curvature radius at the crack tip during cyclic loading. Relations are obtained between mechanical material characteristics, crack geometry, and the rate of crack growth in a structure under cyclic loading. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 167–175, July–August, 2009.  相似文献   

15.
Cracks driven by shrinkage due to cooling or drying arrange themselves via mutual interaction. For parallel straight crack arrays driven by idealized transient shrinkage fields the scaling behavior in an infinite half-space is derived analytically by means of fracture mechanics bifurcation analysis with two plausible scaling assumptions. Crack spacing in thermal shock crack patterns has been found to be approximately proportional to the crack length and inversely proportional to the crack velocity. The spacing of tunneling cracks formed in a drying layer between plates scales as the 2/3rd power of layer thickness as a consequence of the specific interaction between the tunneling cracks. The difference in scaling behavior in the two cases is explained by the dimensionality of the geometrical setup determined by the boundary condition rather than by different physical processes. In either case, good agreement between theory and experiments is found.  相似文献   

16.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

17.
In this study, the fatigue crack propagation behavior in the stress interaction field between two different fatigue cracks is studied by experiment and finite element analysis. In the experiment, the offset distance between two cracks and the applied stress are varied to create different stress interaction fields. The size of the plastic zone area is used to examine the crack propagation path and rate. Three types of crack propagation in the interaction field were found by experiment, and the crack propagation behavior of two cracks was significantly changed as different stresses were applied. The size of the plastic zone obtained by finite element analysis can be used to explain crack propagation behavior qualitatively.  相似文献   

18.
Additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crack growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. This is the first time that AE is applied in AM components under fatigue.  相似文献   

19.
The most undesirable damage that can occur in gear units is crack in the tooth root as it often makes gear unit operation impossible. Monitoring vibrations can be used to detect defects. Time signals are acquired experimentally and afterwards. Different methods can be used to analyse them. The changes in tooth stiffness caused by a fatigue crack in the tooth root are of significance. The dynamic response of a gear unit with a damaged tooth differs from the one of an undamaged tooth. Amplitudes of time signal are, by time–frequency analysis, presented as a function of frequencies in spectrum.  相似文献   

20.
In this comment it is pointed out that the analysis of the dynamic stress intensity factor, dynamic electric displacement intensity factor and dynamic energy release rate conducted by Ing and Wang [Ing, Y.S., Wang, M.J., 2004. Explicit transient solutions for a mode III crack subjected to dynamic concentrated loading in a piezoelectric material. International Journal of Solids and Structures 41, 3849–3864] is incorrect. The correct analysis and corresponding correct plots are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号