首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A new, simple and inexpensive kinetic catalytic spectrophotometric method for the determination of oxalate is described. The method is based on an activation effect of oxalate on a catalytic effect of iron(II) on the oxidation of iodide by bromate. The reaction is monitored by measuring the absorbance of triiodide ion at lambda max = 352 nm. A calibration graph was obtained from 0.10 - 7.0 microg cm(-3) of oxalate with a detection limit of 0.080 microg cm(-3). The standard deviations for ten replicate determinations of 0.50, 1.0 and 5.0 microg cm(-3) of oxalate were 4.0, 2.6 and 1.8%, respectively. The applicability of the method was demonstrated by the determination of oxalate ion in real samples.  相似文献   

2.
A simple and rapid spectrophotometric method for the determination of oxalate ion was established by the fading of a colored complex between N,N'-diethyl-N,N'-[[4,4'-dihydroxy-1,1'-binaphthalene]-3,3'-diyl]bisbenzamide and copper(II). Beer's law was obeyed in the concentration range of 0.1 - 2.0 microg cm(-3) for oxalate ion, with an effective molar absorptivity at 533 nm and the relative standard deviation being 8.0 x 10(3) dm(3) mol(-1) cm(-1) and 1.0% (n = 5), respectively. This proposed method has excellent reproducibility, and was applied to recovery tests of oxalate ion in tap water and human urine; the results were satisfactory. This is suggested that the method is based on the reaction of copper(II) to copper(I) with oxalate ion.  相似文献   

3.
Benzildithiosemicarbazone (BDTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of copper(II). BDTSC reacts with copper(II) in the pH range 1.0-7.0 to form a yellowish complex. Beer's law is obeyed in the concentration range 0.5-0.4 microg cm(-3). The yellowish Cu(II)-BDTSC complex in chloroform shows a maximum absorbance at 380 nm, with molar absorptivity and Sandell's sensitivity values of 1.63 x 10(4) dm3 mol(-1) cm(-1) and 0.00389 microg cm(-2), respectively. A repetition of the method is checked by finding the relative standard deviation (RSD) (n = 10), which is 0.6%. The composition of the Cu(II)-BDTSC complex is established as 1:1 by slope analysis, molar ratio and Asmus' methods. An excellent linearity with a correlation coefficient value of 0.98 is obtained for the Cu(II)-BDTSC complex. The instability constant of the complex calculated from Edmond and Birnbaum's method is 7.70 x 10(-4) and that of Asmus' method is 7.66 x 10(-4), at room temperature. The method is successfully employed for the determination copper(II) in pharmaceutical and environmental samples. The reliability of the method is assured by analyzing the standard alloys (BCS 5g, 10g, 19e, 78, 32a, 207 and 179) and by inter-comparison of experimental values, using an atomic absorption spectrometer.  相似文献   

4.
A simple colorimetric flow-injection system for the determination of Cu(II) based on a complexation reaction with nitroso-R salt is described. The chemical and FIA variables were established using the univariate and simplex methods. A small volume of Cu(II) was mixed with merged streams of nitroso-R salt and acetate buffer solutions. The absorbance of the complex was continuously monitored at 492 nm. The calibration curve over the concentration range 1.0-7.0 microg ml(-1) was obtained. The relative standard deviation for determining 4.0 microg ml(-1) Cu(II) was 0.47% (n = 11). The detection limit (3sigma) was 0.68 microg ml(-1) and the sample throughput was 150 h(-1). The validity of the method has been satisfactorily examined for the determination of Cu(II) in wastewater and copper ore samples. The accuracy was found to be high, because the student t-values were calculated to be less than the theoretical values when the results were compared with those obtained by FAAS.  相似文献   

5.
Yuan YX  Wang YJ 《Talanta》1989,36(7):777-779
The micellar solubilization complex systems of V(V), Cu(II), Zr(IV), Pd(II), Fe(III), Ni(II) and Co(II) with 3,5-diBr-PADAP and Triton X-100 have been investigated by HPLC on an ODS (5 x 250 mm) column with a ternary eluent of methanol-acetone-acetone-water containing TBA(+) and acetate buffer (pH 3.0) at 600 or 572 nm wavelength for the detection of the complexes. An HPLC-spectrophotometric method for determination of seven metal ions has been developed. The peak height calibration curves are linear up to 50-100 mu/1, metal ion concentration. The relative standard deviations for the determination of 30.0 mu/1 metal ion were 0.9-1.6% and the detection limits (S/N = 3) were 1.1-3.6 mug/1.  相似文献   

6.
A rapid and sensitive extractive spectrophotometric method has been developed for the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts using pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) as an analytical reagent. The reagent forms a red-color complex with the metal at pH 3.0, which is extracted into benzene. The absorbance is measured at 460 nm. The method adheres to Beer's law up to a concentration range of 0.4-6.4 microg cm(-3). The molar absorptivity and Sandell's sensitivity are 2.20 x 10(4) dm3 mol(-1) cm(-1) and 4.85 x 10(-3) microg cm(-2), respectively. The correlation coefficient of the Pd(II)-PPT complex is 0.99, which indicates an excellent linearity between two variables. The detection limit of this method is 0.05 microg cm(-3). The instability constant of the Pd(II)-PPT complex calculated from Edmond and Birnbaum's method is 2.90 x 10(-5) and that of Asmus' method is 2.80 x 10(-5) at room temperature. The concurrent repetition of the method is checked and the relative standard deviation (RSD) (n = 5) was derived as 1.84 percent. The present method was applied to the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts. The results were compared by employing an atomic-absorption spectrometer.  相似文献   

7.
4-(N,N-diethylamino)benzaldehyde thiosemicarbazone(DEABT) is proposed as a sensitive and selective analytical reagent for the spectrophotometric determination of palladium(II). The reagent reacts with palladium (II) in a potassium hydrogen phthalate-hydrochloric acid buffer of pH 3.0, to form a yellow complex. Beer's law is obeyed in the concentration range up to 3.60 microgmL(-1). The optimum concentration range for minimum photometric error as determined by Ringbom plot method is 0.36 - 3.24 microg mL(-1). The yellow Pd(II)-DEABT complex shows a maximum absorbance at 408 nm, with molar absorptivity of 3.33 x 10(4) dm3 mol(-1) cm(-1) and Sandell's sensitivity of the complex from Beer's data, for D = 0.001, is 0.0032 microg cm(-2). The composition of the Pd(II)-DEABT complex is found to be 1:2 (M:L). The interference of various cations and anions in the method were studied. The proposed method was successfully used for the determination of Pd(II) in alloys, catalysts, complexes and model mixtures with a fair degree of accuracy.  相似文献   

8.
An ion chromatographic method for the rapid and direct determination of iodide in seawater is reported. Poly(ethylene glycol) (PEG) groups were chemically bonded onto silica gel or C30-bonded silica gel via diol groups. PEG-bonded C30 binary phases allowed determination of iodide in seawater samples without any interference. Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention of analyte anions. The retention time of anions increased with increasing eluent concentration. The detection limit for iodide obtained by injecting 0.2 microl of sample was 13 microg l(-1) (S/N=3) while the limit of quantitation was 43 microg l(-1) (S/N=10). The present method was successfully applied to the rapid and direct determination of iodide in seawater with long-term durability.  相似文献   

9.
A simple spectrophotometric method is presented for the rapid determination of copper at a trace level using 2,5-dimercapto-1,3,4-thiadiazole (DMTD) as a new spectrophotometric reagent. The method is based on the reaction of non-absorbent DMTD in a slightly acidic (0.002-0.014 mol dm(-3) sulfuric acid) aqueous solution with copper(II) to produce a highly absorbent greenish-yellow chelate product that has an absorption maximum at 390 nm. The reaction is instantaneous and the absorbance remains stable for 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 5.65 x 10(4) dm3 mol(-1) cm(-1) and 10 ng cm(-2) of CuII, respectively. Linear calibration graphs were obtained for 0.1-20 microg cm(-3) of CuII; the stoichiometric composition of the chelate is 1:2 (Cu:DMTD). A large excess of over 50 cations, anions and complexing agents (e.g. tartrate, oxalate, citrate, phosphate, thiourea, SCN-) do not interfere in the determination. The method was successfully used for the determination of copper in several Standard Reference Materials as well as in some environmental water samples, biological samples, soil samples and solutions containing both copper(I) and copper(II) and complex synthetic mixtures. The method has high precision and accuracy (s = +/-0.01 for 0.5 microg cm(-1)).  相似文献   

10.
A chemiluminescence (CL) method using flow injection (FI) has been investigated for the rapid and sensitive determination of enalapril maleate. The method is based on the CL reaction of the drug with tris(2,2'-bipyridyl)ruthenium(II), Ru(bipy)3(2+) and acidic potassium permanganate. After selecting the best operating parameters, calibration graphs were obtained over concentration ranges of 0.005-0.2 microg/ml and 0.7-100 microg/ml with a detection limit (S/N=2) of 1.0 ng/ml. The average % found was 99.9 +/- 0.7 and 100.2 +/- 0.3 for the two concentration ranges respectively. %RSD (n=10) for 5.0 microg/ml was 0.44. The method was successfully applied to the determination of enalapril maleate in dosage forms and biological fluids without interferences.  相似文献   

11.
A spectrophotometric method is developed for the determination of traces of copper(II), based on the catalytic oxidative coupling reaction of 3-hydroxyacetanilide with 3-methyl-2-benzothiazolinone hydrazone in the presence of ammonia and hydrochloric acid. Beer's law is obeyed in the copper(II) concentration range of 0.008-0.16 microg mL(-1), and the molar absorptivity at 530 nm is 2.5x10(5) L mol(-1) cm(-1). The Sandell's sensitivity of the product is 0.000254 microg cm(-2). The optimum reaction conditions and other important analytical parameters have been investigated. The proposed method is applied to the analysis of water and soil samples and the results are compared with the literature method.  相似文献   

12.
A rapid, relatively sensitive, and low-cost method for the determination of water-soluble urea content in dermatological therapy products and cosmetics is proposed using a new spectrophotometric assay with water as the only extraction solvent. Spectrophotometric methods involve addition of a known excess of bromate to urea in an acid medium, followed by the determination of residual bromine and chlorine reacting with methyl orange and measurement of absorbance at 505 nm. The absorbance increases linearly with urea concentration (r = 0.9998). The systems obey Beer's law for 6 - 90 microg ml(-1). The calculated apparent molar absorbance values are found to be 4.537 x 10(3) dm(3) mol(-1) cm(-1) and the Sandell's sensitivity is 0.013 microg cm(-2). The variables affecting the rate of the reaction were investigated. The relative standard deviation for five-replication determination of 60 microg ml(-1) urea was 2.1% and the detection limit of the method is 0.34 ng ml(-1).  相似文献   

13.
The cloud point extraction behavior of Sn(II) and Sn(IV) using alpha-polyoxometalate and mixed surfactants solution was investigated. The mixture of a nonionic surfactant (Triton X-100) and a cationic surfactant (CTAB) was utilized as a suitable micellar medium for preconcentration and extraction of tin complexes. Sn(II) in the presence of Sn(IV) was extracted with alpha-polyoxometalate, 0.3% (w/v) Triton X-100 and 3.5x10(-5) mol L(-1) CTAB at pH 1.2. Whereas the pH value of 3.7 were used for the individual determination of Sn(II) and Sn(IV) and also for total tin determination at the same conditions. Enrichment factors of 100 were obtained for the preconcentration of both metal ions. Under the optimal conditions, linearity was obeyed in the ranges of 55-670 microg L(-1) of Sn(II) and 46-750 microg L(-1) of Sn(IV) ion concentration. The detection limit of the method was also found to be 12.6 microg L(-1) for Sn(IV) and 8.4 microg L(-1) for Sn(II). The relative standard deviation of seven replicate determination of 100 microg L(-1) both metal ions were obtained about 2.4%. The diverse ion effect of some anions and cations on the extraction efficiency of target ions were tested. Finally, the optimized conditions developed were successfully utilized for the determination of each metal ion in various alloy, juice fruit, tape and waste water samples with satisfactory results.  相似文献   

14.
The high toxicity of the cyanide ion at low concentration necessitates its analysis in a variety of environmental samples with a very low cyanide content. A new sensitive spectrophotometric method has been developed for the trace determination of cyanide with ninhydrin (NH) in an alkaline medium. Beer's law is obeyed in the range of cyanide concentration 0.04-0.24 microg cm(-3), and the molar absorptivity at 590 nm is 2.20 x 10(5) dm3 mol(-1) cm(-1). The Sandell's sensitivity of the product is 0.000118 microg cm(-2). The optimum reaction conditions and other important analytical parameters have been investigated. The results obtained by using the proposed method for environmental samples agree well with those obtained by the Aldridge standard method.  相似文献   

15.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

16.
A catalytic spectrophotometric method for the determination of traces of copper(II) is proposed. 3-Methyl-2-benzothiazolinone hydrazone (MBTH) is oxidized by hydrogen peroxide to form a yellowish-brown compound. The reaction is accelerated by trace amounts of copper(II), and can be followed by measuring the increase in the absorbance at 390 nm. Since the absorbance at 40 min from the reaction start increases with an increase in the copper(II) concentration, the absorbance value is used as a parameter for copper(II) determination. Under the optimum experimental conditions (8.4 x 10(-3) mol dm(-3) MBTH, 0.7 mol dm(-3) hydrogen peroxide, pH 5.2, 35 degrees C), copper(II) can be determined in the range 0-50 microg dm(-3). The relative standard deviations are 6.9, 3.5, 2.7% for 2, 20 and 40 microg dm(-3), respectively. The detection limit of this method (3sigma) is 0.27 microg dm(-3). It was successfully applied to a determination of copper(II) in river water, tap water and ground-water samples. According to the results of a kinetic study, a mechanism is proposed which leads to the following rate equation: R0(cat) = kK1K2[MBTH][H2O2][Cu(II)]0/{(1 + K2[H2O2])[H+]}.  相似文献   

17.
Li S  Li S  Chen A 《Talanta》1993,40(7):1085-1090
A simple, selective and accurate spectrophotometric method for determination of trace copper with diethyldithiocarbamate(DDTC) in the presence of beta-cyclodextrin(beta-CD) in ammonia media has been developed. The apparent molar absorptivity of Cu(II)-DDTC-beta-CD inclusion complex is 1.3 x 10(4) 1 . mole(-1) . cm(-1) at 436 nm, and Beer's law is obeyed for copper in the range 0-150 mug/25 ml. The detection limit is 4.38 x 10(-7)M(S/N = 3). The proposed method has been successfully applied to the determination of copper in aluminium alloys, soils, millet, wheat flour, herbs, vegetables and some traditional Chinese herbal medicines with satisfactory results.  相似文献   

18.
A simple and sensitive spectrophotometric method for determination of copper(II) is based on the formation of a blue coloured complex of Cu(II) with 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF) in the presence of cetylpyridinium chloride (CP) and Triton X-100, has been developed. Optimum concentrations of PF, CP, Triton X-100 and pH ensuring maximum absorbance were defined. The complex Cu(II)-PF-CP-Triton X-100 shows maximum absorbance at 595 nm with a molar absorptivity value of 9.67x10(4) l mol(-1) cm(-1). The detection limit of the method is 0.028 mug ml(-1). Beer's law is obeyed for copper concentrations in the range 0.04-0.4 mug ml(-1). The studies of the effect of foreign ions on determination of copper, show that the selectivity of the method is poor. The cations of alkali metals and anions Br(-), Cl(-), I(-), F(-), NO(2)(-), NO(3)(-), CH(3)COO(-), SO(4)(2-), S(2)O(3)(2-), PO(4)(3-), citrates (examined in 1000-fold molar excess over copper) do not affect the determination. All cations forming complexes with PF have an interfering effect. The statistical evaluation of the method was carried out for six determinations using 10 mug of Cu and the following results were obtained: the standard deviation, SD=0.042, the confidence interval mu(95)=10.1+/-0.1 mug Cu. The method has been applied for determination of copper in blood serum.  相似文献   

19.
Carvalho MS  Fraga IC  Neto KC  Silva Filho EQ 《Talanta》1996,43(10):1675-1680
The present work describes a selective, rapid and economical method for the determination of cobalt using the 2-(2-benzothiazolylazo)-p-cresol (BTAC) as a spectrophotometric reagent associated with a solid extraction on polyurethane foam. The BTAC reacts with Co(II) in the presence of Triton-X100 surfactant forming a green complex with maximum absorption at 615 nm. The reaction is used for cobalt determination within a pH range of 6.50-7.50, with an apparent molar absorptivity of 1.62 x 10(4) L mol(-1) cm(-1). Beer's Law is obeyed for a concentration of at least 1.60 microg ml(-1). A selective procedure is proposed for cobalt determination in the presence of Fe(II), Hg(II), Zn(II) and Cu(II) up to milligram levels using masking agents. Polyurethane foam is used for the preconcentration and separation of cobalt from thiocyanate media and this procedure is applied to its determination in nickel salts and steel alloys.  相似文献   

20.
A sensitive and simple method for the determination of trace amounts of indium in water samples by graphite furnace atomic absorption spectrometry (GFAAS) after coprecipitation with chitosan was investigated. Indium was quantitatively preconcentrated from water samples by coprecipitation with chitosan at pH 7.0-9.0. The coprecipitant was easily dissolved with acetic acid, and indium in the resulting solution was determined by GFAAS. The addition of lanthanum as a chemical modifier was more effective for the atomic absorbance of indium. The detection limit (S/N > or = 3) for indium was 0.04 microg dm(-3), and the relative standard deviations (n = 5) were 3.5-4.5% at 1.0 microg/100 cm3. The results obtained in this study indicate that the proposed method can be successfully applied to the determination of trace indium in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号