首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solution surface-erosion route was successfully employed to produce one-dimensional (1D) ZnO nanostructures. ZnO nanorod arrays and three-dimensional urchin-like assemblies could be selectively obtained with different manipulations. In this process, zinc foil was introduced to an organic solution system and acted both as a reactant and substrate to support the 1D nanostructures obtained. This method, without any template, apparatus, surfactants, or additional heterogenous substrates, has greatly simplified the preparation of oriented 1D ZnO nanostructures. In particular, this simple route could be carried out at room temperature over a period as short as several minutes, thus it could be conveniently transferred to industrial applications. The possible formation mechanism, erosion process, and influence factors were also investigated.  相似文献   

2.
A general and facile approach has been developed to prepare various metal oxide nanocrystals from commercially available metal acetate precursors using an amine-mediated reaction. The influence of temperature and capping agents on the yield and final morphology of the metal oxides nanocrystals was investigated. The approach was applied in the synthesis of shape-controlled ZnO nanocrystals. ZnO nanowires, nanorods, bullets and triangular nanocrystals were successfully prepared by tuning the molar ratio between amine to zinc acetate precursor. On the basis of FTIR and NMR spectroscopic studies, we propose that the amine could mediate the breakdown of the metal acetates through a nucleophilic attack mechanism. The results suggest that amine can play dual role as both the attacking agent and capping agent in this new methodology.  相似文献   

3.
4.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

5.
溶剂热制备氧化锌纳米线   总被引:10,自引:0,他引:10  
ZnO nanowires were synthesized mildly through an absolute alcohol solvothermal process at 120 ℃ for 12 h using ZnAc2·2H2O and NaOH as raw materials and PEG400 as a soft template. The cyrstal structure and morphology of the nanowires were characterized by XRD, SEM, TEM and HRTEM. The results indicate that the diameter of ZnO nanowires is 40 nm, the length can reach 2 μm and the nanowires are of high purity, homogeneity and well crystallinty. The influence of the various factors on the formation of ZnO nanowires and formation mechanism were also discussed.  相似文献   

6.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

7.
从氧化锌矿制备高纯超细ZnO粉体   总被引:7,自引:0,他引:7  
超细ZnO具有表面效应、体积效应、久保效应以及优良的光活性、电活性、烧结活性和催化活性 ,可用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料、陶瓷材料、化妆品及医药材料。在橡胶工业、染料油墨等领域也有应用前景[1~ 5] 。目前 ,国内外对制备超细ZnO粉体的研究文章较多 ,但以氧化锌矿为原料直接研制的文章还很少。湿化学法是近二十年来超细ZnO产品应用开发的主要活跃点之一 ,直接沉淀法是制备超细ZnO的一种重要湿化学方法 ,它是在含有一种或多种粒子的可溶…  相似文献   

8.
以Zn(acac)2.H2O为单源前驱体,采用水热法在140℃条件下制备了ZnO纳米棒,并用XRD、SEM、TEM等测试手段对其进行了表征。利用紫外—可见分光光度计测试了其光吸收性能,发现ZnO纳米棒对200-400 nm波长范围的光有很强的吸收性,在可见光范围内,也有较强的吸收。以ZnO纳米棒为光催化剂对有机染料酸性红4B进行了光催化降解实验,并研究了光源、污水浓度对ZnO纳米棒光催化氧化效果的影响。研究结果表明,在日光照射180 min后,对酸性红4B的降解率接近100%。  相似文献   

9.
ZnO/ZnS heterostructured nanorod arrays with uniform diameter and length were synthesized from zinc substrates in a one‐pot procedure by using a simple hydrothermal method. Structural characterization by HRTEM indicated that the heterostructured nanorods were composed of parallel segments of wurtzite‐type ZnO and zinc‐blende ZnS, with a distinct interface along the axial direction, which revealed the epitaxial relationship, ZnO (10$\bar 1$ 0) and ZnS ($\bar 1$ 1$\bar 1$ ). The as‐prepared ZnO/ZnS nanorods showed only two green emissions at around 523 nm and 576 nm. We also found that the nanorods exhibited high sensitivity to ethanol at relatively low temperatures, owing to their smaller size and structure.  相似文献   

10.
We report a novel approach for synthesizing CdS and CdSe quantum dots subsectionally sensitized double-layer ZnO nanorods for solar cells, which are comprised of CdS QDs-sensitized bottom-layer ZnO NRs and CdSe QDs-sensitized top-layer ZnO NRs. X-ray diffraction study and scanning electron microscopy analysis indicate that the solar cells of subsectionally sensitized double-layer ZnO NRs, which are the hexagonal wurtzite crystal structure, have been successfully achieved. The novel structure enlarged the range of absorbed light and enhanced the absorption intensity of light. The I-V characteristics show that the double-layer structure improved both the current density (Jsc) and fill factor (FF) by 50%, respectively, and power conversion efficiency (η) was increased to twice in comparison with the CdS QDs-sensitized structure.  相似文献   

11.
采用浸渍法制备了表面AgX(X=I,Br)等离子基元修饰的ZnO纳米柱状阵列,研究了浸渍浓度和时间以及紫外光光照预处理对ZnO纳米柱状阵列可见光光催化活性的影响.采用场发射扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱以及X射线光电子能谱仪等手段对ZnO纳米柱状阵列的形貌、相组成、禁带宽度及其表面特性进行了表征.结果显示,AgBr颗粒分布于ZnO纳米柱状阵列的顶端及顶端侧面,同时AgBr颗粒之间相互接触而形成网状结构.通过紫外光光照预处理,AgBr表面出现细小颗粒,形成Ag/AgBr/ZnO纳米复合结构.可见光光催化降解甲基橙结果表明,在相同工艺条件下所制AgBr/ZnO的可见光光催化活性明显优于AgI/ZnO,且与浸渍浓度及时间有关.由于ZnO纳米柱状阵列的比表面积大,AgBr的可见光响应特性以及Ag/AgBr纳米结构的表面等离子效应,经过紫外光光照预处理形成的Ag/AgBr/ZnO纳米复合结构表现出最好的可见光光催化活性.  相似文献   

12.
Given the proper band gap, low cost and good stability, hematite(α-Fe_2O_3) has been considered as a promising candidate for photoelectrochemical(PEC) water splitting, however suffers from the sluggish surface water oxidation reaction kinetics. In this study, a simple dip-coating process was used to modify the surface of α-Fe_2O_3 nanorod arrays with cobalt oxide(CoO_x) and carbon(C) for the improved PEC performance, with a photocurrent density at 1.6 V(vs. reversible hydrogen electrode, RHE) increased from 0.10 mA/cm~2 for the pristine α-Fe_2O_3 to 0.37 mA/cm~2 for the CoO_x/C modified α-Fe_2O_3 nanorods. As revealed by electrochemical analysis, thanks to the synergistic effect of CoO_x and C, the PEC enhancement could be attributed to the enhanced charge transfer ability, decreased surface charge recombination, and accelerated water oxidation reaction kinetics. This study serves as a good example for improving PEC water splitting performance via a simple method.  相似文献   

13.
14.
A novel and simple approach is reported to fabricate uniform single-crystal ZnO nanorods in ionic liq-uids. The as-obtained ZnO nanorods have been characterized by XRD,TEM,HRTEM,SAED,XPS,EDXA,PL and UV-vis absorption spectra. The rod diameters of the nanostructures can be controlled by tuning the amount of sodium hydroxide in the synthesis. Photoluminescence results show that the nanos-tructural ZnO exhibits better optical properties than bulk ZnO does and interestingly,the smaller the rod diameters are,the better optical property 1D nanostructural ZnO exhibits. The possible growth mechanism of ZnO nanorods is also investigated.  相似文献   

15.
Synthetic zinc patina was grown on galvanized steel sheets in supercritical carbon dioxide atmosphere. Different patina compounds were dissolved and quantified using a stepwise immersion and dissolution procedure. The distinct patina components, namely anhydrous zinc carbonate (a dense layer adjacent to metallic zinc) and zinc hydroxy carbonate (nanowires on the surface), were dissolved in glycine solutions, followed by quantification of Zn2+ in the solutes by X‐ray fluorescence. The zinc hydroxy carbonate nanowires were readily glycine soluble, and the anhydrous zinc carbonate showed scarce glycine solubility, which enabled their selective quantification. The amount of the remaining (anhydrous) zinc carbonate after glycine extraction was determined from the glycine‐soluble zinc oxide after calcination (heat treatment for 10 minutes at 350°C). The results were verified by scanning electron microscopy imaging and Fourier transform infrared spectroscopy measurements.  相似文献   

16.
以通过水热法在石英玻璃片表面合成的ZnO纳米棒为模板,在其表面生成聚多巴胺薄膜,然后与KMnO4反应,制备了MnO_2阵列纳米管。经表征发现,制备的MnO_2纳米管形态良好,在基底表面的附着力强;所制备的MnO_2为非晶型。由于ZnO模板易合成、易去除、形态好,且聚多巴胺薄膜的生成方法也很简便易行,使得该制备MnO_2纳米管阵列的方法具有简便、快捷、适用性广等的特性,对MnO_2新形态纳米结构的构建具有一定的启示作用。  相似文献   

17.
In the fabrication of flexible devices, highly ordered nanoscale texturing, such as semiconductor metal oxide nanorod arrays on flexible substrates, is critical for optimal performance. Use of transparent conducting films, metallic films, and polymer substrates is limited by mechanical brittleness, chemical and thermal instability, or low electrical conductivity, low melting point, and so on. A simple and general nanocrystal-seed-directed hydrothermal route has now been developed for large-scale growth of nanorod arrays of various semiconductor metal oxides (MO), including TiO(2), ZnO, MnO(2), CuO, and ZrO(2) on both sides of flexible graphene (G) sheets to form sandwichlike MO/G/MO heterostructures. The TiO(2)/G/TiO(2) heterostructures have much higher photocatalytic activity than TiO(2) nanorods, with a photocatalytic degradation rate of methylene blue that is four times faster than that of the TiO(2) nanorods, and are thus promising candidates for photocatalytic decontamination.  相似文献   

18.
We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.  相似文献   

19.
In this work, the adsorption of tyrosinase on ZnO nanorods and its electrocatalytic behaviors were investigated. The mushroom tyrosinase with low isoelectric point was expected to adhere on the positively charged surface of ZnO nanorods by electrostatic attraction in a neutral solution. Scanning electron microscope images and spectroscopic analysis demonstrated the adsorption of tyrosinase on ZnO nanorods and the adsorbed tyrosinase remain its bioactivity to a large extent. In the presence of tyrosinase, a roughly and cyathiform of nanosized ZnO films was obtained. This open, three-dimensioned ramiform structure made the move through and exchange the electron with GCE more easily, and thus accelerating the electron transfer between electroactive and GCE. The adsorbed tyrosinase could catalyze the oxidation of phenol and catechol. The linear concentration ranges were from 0.02 to 0.1 mM and 0.01 to 0.4 mM, for phenol and catechol, respectively. The apparent Michaelis-menten constant , a reflection of the enzymatic affinity, was 0.24 mM for phenol and 1.75 mM for catechol, which suggests a large affinity to phenolic compound. The proposed methods presented a way for further studies of the immobilization and electrochemistry of proteins on nanostructured materials.  相似文献   

20.
Zinc Oxide (ZnO) nanorod arrays were grown on different substrates by hydrothermal method. The crystallinity of ZnO nanorod was regularly investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine morphology of the ZnO nanorods. The results indicate that the nanorods grow along [002] orientation. SEM and TEM images and XRD patterns show that the growth of ZnO nanorods on graphene/Quartz substrate is better than the other substrates due to the number and size of the nanorods which are highly affected through the properties of ZnO seed layers and it has lower defects than the other substrates. PL spectra ZnO would have a higher concentration of oxygen vacancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号