首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let N = N(q) be the number of nonzero digits in the binary expansion of the odd integer q. A construction method is presented which produces, among other results, a block circulant complex Hadamard matrix of order 2αq, where α ≥ 2N - 1. This improves a recent result of Craigen regarding the asymptotic existence of Hadamard matrices. We also present a method that gives complex orthogonal designs of order 2α+1q from complex orthogonal designs of order 2α. We also demonstrate the existence of a block circulant complex Hadamard matrix of order 2βq, where © 1997 John Wiley & Sons, Inc. J Combin Designs 5:319–327, 1997  相似文献   

2.
A complex Hadamard matrix,C, of ordern has elements 1, –1,i, –i and satisfiesCC *=nInwhereC * denotes the conjugate transpose ofC. LetC=[c ij] be a complex Hadamard matrix of order is called the sum ofC. (C)=|S(C)| is called the excess ofC. We study the excess of complex Hadamard matrices. As an application many real Hadamard matrices of large and maximal excess are obtained.Supported by an NSERC grant.Supported by Telecom grant 7027, an ATERB and ARC grant # A48830241.  相似文献   

3.
R. Craigen 《Discrete Mathematics》2008,308(13):2868-2884
We introduce power Hadamard matrices, in order to study the structure of (group) generalized Hadamard matrices, Butson (generalized) Hadamard matrices and other related orthogonal matrices, with which they share certain common characteristics. The new objects turn out to be as interesting, and perhaps as useful, as the objects that motivated them.We develop a basic theory of power Hadamard matrices, explore these relationships, and offer some new insights into old results. For example, we show that all 4×4 Butson Hadamard matrices are equivalent to circulant ones, and how to move between equivalence classes.We provide, among other new things, an infinite family of circulant Butson Hadamard matrices that extends a known class to include one of each positive integer order.Dedication: In 1974 Jennifer Seberry (Wallis) introduced what was then a totally new structure, orthogonal designs, in order to study the existence and construction of Hadamard matrices. They have proved their worth for this purpose, and have also become an object of interest for their own sake and in applications (e.g., [H.J.V. Tarok, A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inf. Theory 45 (1999) 1456-1467. [26]]). Since then many other generalizations of Hadamard matrices have been introduced, including some discussed herein. In the same spirit we introduce a new object showing this kind of promise.Seberry's contributions to this field are not limited to her own work, of which orthogonal designs are but one example—she has mentored many young mathematicians who have expanded her legacy by making their own marks in this field. It is fitting, therefore, that our contribution to this volume is a collaboration between one who has worked in this field for over a decade and an undergraduate student who had just completed his third year of study at the time of the work.  相似文献   

4.
We study the numerical solution of a block system T m,n x=b by preconditioned conjugate gradient methods where T m,n is an m×m block Toeplitz matrix with n×n Toeplitz blocks. These systems occur in a variety of applications, such as two-dimensional image processing and the discretization of two-dimensional partial differential equations. In this paper, we propose new preconditioners for block systems based on circulant preconditioners. From level-1 circulant preconditioner we construct our first preconditioner q 1(T m,n ) which is the sum of a block Toeplitz matrix with Toeplitz blocks and a sparse matrix with Toeplitz blocks. By setting selected entries of the inverse of level-2 circulant preconditioner to zero, we get our preconditioner q 2(T m,n ) which is a (band) block Toeplitz matrix with (band) Toeplitz blocks. Numerical results show that our preconditioners are more efficient than circulant preconditioners.  相似文献   

5.
Let Cn(L) denote the set of all n × n circulant matrices over a distributive lattice L. Then Cn(L) forms a semigroup under the usual matrix product. In this paper, we shall characterize all idempotents in Cn(L), and also estabish the Euler-Fermat theorem for the semigroup Cn(L).AMS Subject Classification (2000): 20MSupported by the Educational Committee of Fujian, China.  相似文献   

6.
Let n be a positive integer, and C n (r) the set of all n × n r-circulant matrices over the Boolean algebra B = {0, 1}, . For any fixed r-circulant matrix C (C ≠ 0) in G n , we define an operation “*” in G n as follows: A * B = ACB for any A, B in G n , where ACB is the usual product of Boolean matrices. Then (G n , *) is a semigroup. We denote this semigroup by G n (C) and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix C. Let F be an idempotent element in G n (C) and M(F) the maximal subgroup in G n (C) containing the idempotent element F. In this paper, the elements in M(F) are characterized and an algorithm to determine all the elements in M(F) is given.  相似文献   

7.
Let Gn(C) be the sandwich semigroup of generalized circulant Boolean matrices with the sandwich matrix C and Gc(Jr~) the set of all primitive matrices in Gn(C). In this paper, some necessary and sufficient conditions for A in the semigroup Gn(C) to be primitive are given. We also show that Gc(Jn) is a subsemigroup of Gn(C).  相似文献   

8.
In this paper, we propose a method to generalize Strang's circulant preconditioner for arbitrary n-by-n matrices An. The th column of our circulant preconditioner Sn is equal to the th column of the given matrix An. Thus if An is a square Toeplitz matrix, then Sn is just the Strang circulant preconditioner. When Sn is not Hermitian, our circulant preconditioner can be defined as . This construction is similar to the forward-backward projection method used in constructing preconditioners for tomographic inversion problems in medical imaging. We show that if the matrix An has decaying coefficients away from the main diagonal, then is a good preconditioner for An. Comparisons of our preconditioner with other circulant-based preconditioners are carried out for some 1-D Toeplitz least squares problems: min ∥ b - Ax∥2. Preliminary numerical results show that our preconditioner performs quite well, in comparison to other circulant preconditioners. Promising test results are also reported for a 2-D deconvolution problem arising in ground-based atmospheric imaging.  相似文献   

9.
Skew Hadamard designs (4n – 1, 2n – 1, n – 1) are associated to order 4n skew Hadamard matrices in the natural way. We study the codes spanned by their incidence matrices A and by I + A and show that they are self-dual after extension (resp. extension and augmentation) over fields of characteristic dividing n. Quadratic Residues codes are obtained in the case of the Paley matrix. Results on the p-rank of skew Hadamard designs are rederived in that way. Codes from skew Hadamard designs are classified. An optimal self-dual code over GF(5) is rediscovered in length 20. Six new inequivalent [56, 28, 16] self-dual codes over GF(7) are obtained from skew Hadamard matrices of order 56, improving the only known quadratic double circulant code of length 56 over GF(7).  相似文献   

10.
本文研究了四元数体上矩阵方程XB = C 的循环解及其最佳逼近问题. 利用循环矩阵的结构表示式, 以及四元数矩阵的复分解, 得到了方程XB = C 的循环解存在条件及其通解形式; 在循环矩阵约束条件下, 给出了该方程的最小二乘解集合; 与此同时, 在最小二乘解集合中, 获得与给定四元数循环矩阵的最佳逼近解. 推广了约束矩阵方程的数值求解范围. 数值算例验证了本文算法的可行性.  相似文献   

11.
本文研究了四元数体上矩阵方程XB=C的循环解及其最佳逼近问题.利用循环矩阵的结构表示式,以及四元数矩阵的复分解,得到了方程XB=C的循环解存在条件及其通解形式;在循环矩阵约束条件下,给出了该方程的最小二乘解集合;与此同时,在最小二乘解集合中,获得与给定四元数循环矩阵的最佳逼近解.推广了约束矩阵方程的数值求解范围.数值算例验证了本文算法的可行性.  相似文献   

12.
Cocyclic matrices have the form where G is a finite group, C is a finite abelian group and : G × G C is a (two-dimensional) cocycle; that is,
This expression of the cocycle equation for finite groups as a square matrix allows us to link group cohomology, divisible designs with regular automorphism groups and relative difference sets. Let G have order v and C have order w, with w|v. We show that the existence of a G-cocyclic generalised Hadamard matrix GH (w, v/w) with entries in C is equivalent to the existence of a relative ( v, w, v, v/w)-difference set in a central extension E of C by G relative to the central subgroup C and, consequently, is equivalent to the existence of a (square) divisible ( v, w, v, v/w)-design, class regular with respect to C, with a central extension E of C as regular group of automorphisms. This provides a new technique for the construction of semiregular relative difference sets and transversal designs, and generalises several known results.  相似文献   

13.
Multilevel Hadamard matrices (MHMs), whose entries are integers as opposed to the traditional restriction to {±1}, were introduced by Trinh, Fan, and Gabidulin in 2006 as a way to construct multilevel zero-correlation zone sequences, which have been studied for use in approximately synchronized code division multiple access systems. We answer the open question concerning the maximum number of distinct elements permissible in an order n MHM by proving the existence of an order n MHM with n elements of distinct absolute value for all n. We also define multidimensional MHMs and prove an analogous existence result.   相似文献   

14.
《Quaestiones Mathematicae》2013,36(2):191-216
ABSTRACT

Graph products of circulants are studied. It is shown that if G and H are circulants and gcd(v(G), v(H)) = 1, then every B-product of G and H is again a circulant. We prove that if m ≠ 2, then the generalised prism K2 mxCn is a circulant iff n is odd. A similar result is deduced for the conjunction. We also prove that Cp x Cq is a circulant iff p and q are relatively prime. We close by showing that the composition of two circulants is again a circulant and explicitly describe the resultant circulant's jump sequence in terms of the constituent circulants' jump sequences.  相似文献   

15.
We obtain a broadly applicable decomposition of group ring elements into a “subfield part” and a “kernel part”. Applications include the verification of Lander’s conjecture for all difference sets whose order is a power of a prime >3 and for all McFarland, Spence and Chen/Davis/Jedwab difference sets. We obtain a new general exponent bound for difference sets. We show that there is no circulant Hadamard matrix of order v with 4<v<548, 964, 900 and no Barker sequence of length l with 13 < l ≤ 1022.  相似文献   

16.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   

17.
In this paper, we present two constructions of divisible difference sets based on skew Hadamard difference sets. A special class of Hadamard difference sets, which can be derived from a skew Hadamard difference set and a Paley type regular partial difference set respectively in two groups of orders v 1 and v 2 with |v 1 − v 2| = 2, is contained in these constructions. Some result on inequivalence of skew Hadamard difference sets is also given in the paper. As a consequence of Delsarte’s theorem, the dual set of skew Hadamard difference set is also a skew Hadamard difference set in an abelian group. We show that there are seven pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 35 or 37, and also at least four pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 39. Furthermore, the skew Hadamard difference sets deduced by Ree-Tits slice symplectic spreads are the dual sets of each other when q ≤ 311.   相似文献   

18.
We examine the structure of weighing matricesW(n, w), wherew=n–2,n–3,n–4, obtaining analogues of some useful results known for the casen–1. In this setting we find some natural applications for the theory ofsigned groups and orthogonal matrices with entries from signed groups, as developed in [3]. We construct some new series of Hadamard matrices from weighing matrices, including the following:W(n, n–2) implies an Hadamard matrix of order2n ifn0 mod 4 and order 4n otherwise;W(n, n–3) implies an Hadamard matrix of order 8n; in certain cases,W(n, n–4) implies an Hadamard matrix of order 16n. We explicitly derive 117 new Hadamard matrices of order 2 t p, p<4000, the smallest of which is of order 23·419.Supported by an NSERC grant  相似文献   

19.
We develop a combinatorial approach to the quantum permutation algebras, as Hopf images of representations of type π:As(n)→B(H). We discuss several general problems, including the commutativity and cocommutativity ones, the existence of tensor product or free wreath product decompositions, and the Tannakian aspects of the construction. The main motivation comes from the quantum invariants of the complex Hadamard matrices: we show here that, under suitable regularity assumptions, the computations can be performed up to n=6.  相似文献   

20.
A Buckley matrix is an n × n complex symmetric matrix A = I n + iC, where C is real symmetric positive definite. We prove that, for such A the growth factor in Gaussian elimination is not greater than $${1 + \sqrt{17} \over 4} \simeq 1.28078\ldots$$ Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号