首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.  相似文献   

2.
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.  相似文献   

3.
The first total syntheses of siphonarienolone and siphonarienedione are described. The development of a stereoselective synthesis of beta-diketones facilitated the synthesis of the latter compound. The synthesis of the structures proposed for the natural products afforded compounds whose spectral data did not match those of the natural products. However, the synthesis of compounds isomeric to the proposed structures at C(4) and C(5) afforded compounds identical to the natural products, thereby reassigning the stereochemistry of the natural products.  相似文献   

4.
Natural products,as major resources for drug discovery historically,are gaining more attentions recently due to the advancement in genomic sequencing and other technologies,which makes them attractive and amenable to drug candidate screening.Collecting and mining the bioactivity information of natural products are extremely important for accelerating drug development process by reducing cost.Lately,a number of publicly accessible databases have been established to facilitate the access to the chemical biology data for small molecules including natural products.Thus,it is imperative for scientists in related fields to exploit these resources in order to expedite their researches on natural products as drug leads/candidates for disease treatment.PubChem,as a public database,contains large amounts of natural products associated with bioactivity data.In this review,we introduce the information system provided at PubChem,and systematically describe the applications for a set of PubChem web services for rapid data retrieval,analysis,and downloading of natural products.We hope this work can serve as a starting point for the researchers to perform data mining on natural products using PubChem.  相似文献   

5.
Considering the dynamic features of natural products, our access toward exploring the entire diversity of natural products has been quite limited. It is challenging to assess the diversity of natural products by using conventional analytical methods, even with tandem chromatographic techniques, such as LC‐MS and GC‐MS. This viewpoint is supported by the sequencing analyses of microbial genomes, which have unveiled the potential of secondary metabolite production far exceeding the number of isolated molecules. Recent advancements in metabolomics, in concert with genomics analyses, have further extended the natural product diversity, prompting growing awareness of the existence of reactive or short‐lived natural molecules. This personal account introduces some examples of the discoveries of hitherto elusive natural products, due to physico‐chemical or biological reasons, and highlights the significance of the dark matter of natural products.  相似文献   

6.
Until recently, the field of diversity and library design has more or less ignored natural products as a compound source. This is probably due to at least two reasons. First, combinatorial and reaction-based approaches have been major focal points in the early days of computational library design. In addition, a widespread view is that natural products are often highly complex and not amenable to medicinal chemistry efforts. This contribution introduces recent computational approaches to systematically analyze natural molecules and bridge the gap between natural products and synthetic chemistry programs. Large scale comparisons of natural and synthetic molecules are discussed as well as studies designed to identify `synthetic mimics' of natural products with specific activity. In addition, a concept for the design of natural/synthetic hybrid libraries is introduced. Although research in this area is still in its early stages, an important lesson to be learned from computational analyses is that there is no need to a priori `shy away' from natural products as a source for molecular design.  相似文献   

7.
Impaired systemic redox homeostasis is implicated in the onset and development of various diseases, including skin diseases. Therefore, continuous search for natural products with antioxidant bioactivities applicable in biomedicine is attractive topic of general interest. Research efforts aiming to validate antioxidant potentials of natural products has led to the development of several assays based on various test principles. Hence, understanding the advantages and limitations of various assays is important for selection of assays useful to study antioxidant and related bioactivities of natural products of biomedical interest. This review paper gives a short overview on some chemical and cellular bioassays used to estimate the antioxidant activity of chosen natural products together with a brief overview on the use of natural products with antioxidant activities as adjuvant medicinal remedies in dermatology.  相似文献   

8.
Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.  相似文献   

9.
《Tetrahedron》2019,75(24):3348-3354
β-Lactones, β-lactams and epoxides are privileged structural motifs found in both therapeutics and natural products. Herein we report several strategies for annulation of these motifs onto natural products that are not known to covalently modify their cellular targets. These strategies can facilitate identification of previously unidentified cellular targets or identify novel cellular targets of these natural products. The reported strategies include telescoped synthesis of β-lactones from allylic alcohols, nucleophile-catalyzed Michael aldol-β-lactonizations, and [2 + 2] β-lactam annulations with complex, commercially available alkene-containing natural products as substrates. A novel method for the tagging of phenolic natural products with epoxides is also reported.  相似文献   

10.
This tutorial review provides a historical sampling of synthetic efforts undertaken in our laboratory, which have led to the total syntheses of a range of small molecule natural products of potential interest in oncology. It has become evident that natural products, and structures clearly derivable from natural products, have a remarkable record in the treatment of cancer at the clinical level. It is likely that, with the growing power of chemical synthesis, small molecule natural products will play a continuing role in providing lead anticancer compounds.  相似文献   

11.
The natural products vinaxanthone and xanthofulvin promote regeneration in animal models of spinal cord injury and corneal transplant. However, inhibition of the initially described biological target of these compounds, semaphorin 3A, does not fully account for the recovery demonstrated in vivo following administration of the natural products. Through chemical synthesis substantial quantities of both natural products have been accessed with early reaction development paving the way for synthesizing both compounds. The success of a model system, first disclosed herein, translated to the syntheses of both natural products. Following from this we also report for the first time the discovery of a new target of the natural products, the succinate receptor 1 (SUCNR1). Both natural products function as positive allosteric modulators of SUCNR1. As the first known allosteric modulators of SUCNR1, the compounds represent powerful new tools to understand the pharmacology of SUCNR1 and its control of growth and cellular defense.  相似文献   

12.
刘冰  武艺  陈宁  许颖  季宇彬 《化学通报》2021,84(10):1040-1047
结构多样的芳香类化合物一直被用作新药发现的线索或主要来源。通过对类药物天然产物进行异戊烯基化结构修饰,能有效提高芳香类化合物生物活性及生物利用度,为新药研究与开发提供简便高效的方法。本文综述了近年来芳香类化合物异戊烯基化的各种方法,以为今后研究提供参考。  相似文献   

13.
A new approach to the preparation of complex polyketide natural products has been outlined in which the products of biosynthesis are used as starting materials for chemical synthesis of difficult‐to‐obtain natural products.  相似文献   

14.
Natural product-like libraries represent an effort to combine the attractive features of natural products and combinatorial libraries for high-throughput screening. Three approaches to natural product-like library design are discussed: (1) Libraries based on core scaffolds from individual natural products, (2) libraries of diverse structures with general structural characteristics of natural products, and (3) libraries of diverse structures based on specific structural motifs from classes of natural products. Examples of successful applications in discovery screening are described for each category. These studies highlight the exciting potential of natural product-like libraries in both chemical biology and drug discovery.  相似文献   

15.
A variety of natural products, a valuable source of drug lead compounds, coexist with their stereoisomers as congeners. For pursuing the structural elucidation and the structure–activity relationship study of natural products, it is needed to establish the streamlined synthetic route to supply natural products and their stereoisomers. Divergent pathway is one of the synthetic strategies to deliver more than one target compound. In this digest, selected examples of the stereodivergent approach toward the synthesis of natural products are described. Especially, this digest focuses on common synthetic intermediates and stereodiversification steps from the common intermediates to reach the target compounds.  相似文献   

16.
The potential of new natural products as an important source for the exploration and development of new drugs and crop protection products is a long way from being exhausted. The statistical analysis of the structures of the natural and synthetically derived compounds has shown conspicuous variations in structural types in the natural products derived from different natural sources, which can be utilized in the search for individual active substances. The occasionally voiced prepossession that natural products have already been sufficiently examined and therefore no more innovations are to be expected can definitely be rejected.  相似文献   

17.
Natural products have evolved, at least in part, to bind to biological macromolecules, particularly proteins. As a result, natural products are able to interact with many specific targets within the cell. Indeed for many years this has been central in the drug development process. Today, however, natural products are finding increasing use as probes to interrogate biological systems as part of chemical genomics and related research. In order to demonstrate the utility of natural products in these efforts, the biological activities of many of the major classes of natural products is discussed, according to the cellular organelle and localisation of their specific molecular targets. Emphasis is given to newly discovered compounds and activities that either provide interesting insights into a specific biological function, or that form the basis for potentially new therapeutic approaches.  相似文献   

18.
《Chemistry & biology》1996,3(5):325-330
Recent studies on ex vivo synthesis of natural products reveal that even complex multistep pathways can be successfully reconstructed. Genetic engineering of such reconstituted pathways has already been used to generate ‘unnatural’ natural products related to the original compound. In the future, it may be possible to use these approaches to make natural products that are currently inaccessible to conventional synthesis.  相似文献   

19.
海洋天然产物数据库的设计与建立   总被引:3,自引:0,他引:3  
雷静  周家驹 《化学通报》2002,65(5):353-357,311
对海洋天然产物信息进行了分析,设计并建立了海洋天然产物数据库(Marine Natural Prod-ucts Database,MNPD),该数据库包含海洋天然产物的分子结构及其生物来源、生物活性、生物种类、物理化学参数和参考文献等信息,目前约有11,000条记录。  相似文献   

20.
Only a handful of aziridine-containing natural products have been identified out of the more than 100,000 natural products characterized to date. Among this class of compounds, only the azinomycins (azinomycin A and B) and ficellomycin contain an unusual 1-azabicyclo[3.1.0]hexane ring system, which has been reported to be the reason for theDNAcrosslinking abilities and cytotoxicity of these metabolites. Both families of natural products are produced by Streptomyces species, Streptomyces sahachiroi and Streptomyces ficellus, respectively. Up until recently, much of the work on these molecules has focused on the synthesis of these natural products or their corresponding analogs for in vitro investigations evaluating their DNA selectivity. While one of the most intriguing aspects of these natural products is their biosynthesis, progress made in this area was largely impeded by difficulties with obtaining a reliable culture method and securing a consistent source of these natural products. In this review, we will cover the discovery and biological activity of the azinomycins, their mode of action, related synthetic analogs and biosynthesis, and finish with a discussion on the less studied metabolite, ficellomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号