首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the orthoconic antiferroelectric liquid crystal mixture W107 by means of optical, X-ray and calorimetry measurements in order to assess the origin of the unusally high tilt angle between the optic axis and the smectic layer normal in this material. The optical birefringence increases strongly below the transition to the tilted phases, showing that the onset of tilt is coupled with a considerable increase in orientational order. The layer spacing in the smectic A* (SmA*) phase is notably smaller than the extended length of the molecules constituting the mixture, and the shrinkage in smectic C* (SmC*) and smectic Ca* (SmCa*) is much less than the optical tilt angle would predict. These observations indicate that the tilting transition in W107 to a large extent follows the asymmetric de Vries diffuse cone model. The molecules are on average considerably tilted with respect to the layer normal already in the SmA* phase but the tilting directions are there randomly distributed, giving the phase its uniaxial characteristics. At the transition to the SmC* phase, the distribution is biased such that the molecular tilt already present in SmA* now gives a contribution to the macroscopic tilt angle. In addition, there is a certain increase of the average tilt angle, leading to a slightly smaller layer thickness in the tilted phases. Analysis of the wide angle scattering data show that the molecular tilt in SmCa* is about 20° larger than in SmA*. The large optical tilt (45°) in the SmCa* phase thus results from a combination of an increased average molecule tilt and a biasing of tilt direction fluctuations.  相似文献   

2.
《Liquid crystals》2008,35(2):195-204
In the cylindrical pore geometry of inorganic Anopore membranes the collective relaxation processes observed in a bulk antiferroelectric liquid crystal change considerably under confinement. The frequency degeneration of the soft and Goldstone modes present at the smectic A* (SmA*)-chiral smectic C (SmC*) phase transition in the bulk phase is removed under geometrical restrictions. The relaxation rate of the soft mode is strongly modified due to the deformation of the smectic layers in the curved geometry of the pores and is superimposed by the molecular relaxation process in the SmA* and SmC* phases. The soft mode in confinement splits into two relaxation processes, which are present through all other mesophases (SmC* and SmCa*). One of them is nearly temperature independent and slightly decreases in frequency in the SmCa* phase. This Goldstone-like process can be assigned to the highly deformed helical structure fluctuations. The second one exhibits the characteristic features for the molecular and soft mode relaxation processes depending on the temperature range. The biquadratic and the piezoelectric coupling between the tilt angle and spontaneous polarization are revealed in their temperature dependence.  相似文献   

3.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

4.
Several new optically active liquid crystal dimers comprising pro-mesogenic cholesterol and a chiral diphenylacetylene (tolane) segment, covalently linked in an end-to-end fashion through a flexible spacer, have been synthesized and investigated for their mesomorphic behaviour with the aid of optical, calorimetric and X-ray diffraction studies. Five unsymmetrical dimers, designed on the basis of recent work, involve molecular structural variations of the tolane mesogenic entity with a view to stabilizing a wide thermal range smectic A (SmA) phase featuring the electroclinic effect. Three different chiral chains, namely, (S)-1-methylheptyloxy, (S)-2-methylbutyloxy, (3S)-3,7-dimethyloctyloxy, with or without polar (nitro or fluoro) lateral substituents, were incorporated, while keeping the length (C6) of the spacer constant. As expected, all the dimers exhibited a SmA phase. A few also showed chiral nematic (N*) and/or twist grain boundary and/or chiral smectic C (SmC*) phases. Remarkably, some of these oligomesogens, upon melting, had a stable SmA phase over a wide thermal interval (100-150°C); this state seems to be stable for a long period of time. Electro-optic studies, including optical tilt angle as well as temporal response as a function of temperature, were carried out in the SmA phase. The SmC* phase was also investigated for its electrical switching and optical tilt angle, as well as spontaneous polarization as a function of temperature. These studies showed that the mesophase response to an applied field is weak and is independent of variations in the dimer investigated.  相似文献   

5.
The smectic layer spacing of two homologous series of ferroelectric liquid crystal compounds was characterized by small-angle x-ray diffraction and different degrees of smectic layer shrinkage on cooling from the SmA* into the SmC* phase were observed. The smectic A*-smectic C* phase transition was further studied by measuring the thermal and electric field effects on the optical tilt angle and the electric polarization. With decreasing length of the alkyl terminal chain the phase transition changes from tricritical exhibiting high layer shrinkage to a pure second-order transition with almost no layer shrinkage. This is explained by the increased one-dimensional translational order of the smectic layers, which seems to promote the "de Vries"-type [Mol. Cryst. Liq. Cryst. 41, 27 (1977)] smectic A*-C* phase transition with no or little layer shrinkage.  相似文献   

6.
A new series of materials with a chiral fragment derived from lactic acid and a methoxy group as lateral substituent in different positions of the molecular core was synthesised and investigated. Derivatives with ester or ether linkages of the non‐chiral chain were also studied. Depending on the molecular structure, cholesteric, twist grain boundary smectic A (TGBA*), chiral smectic A (SmA*) or chiral smectic C (SmC*) phases were detected. In derivatives with the ester linkage and a methoxy group at the nearest and the next nearest phenyl ring to the non‐chiral chain these phases completely disappear. On the other hand, a methoxy group on the phenyl ring close to the chiral chain provides a compound with low layer shrinkage at the SmA*–SmC* phase transition (“de Vries” behaviour). The temperature dependence of the spontaneous polarisation, the tilt angle, the layer spacing as well as the complex permittivity were studied and the results discussed in terms of molecular structure.  相似文献   

7.
We report preliminary results of optical and small angle X-ray scattering (SAXS) experiments on the smectic A*-smectic C* transition in two ferroelectric liquid crystalline polysiloxanes. Although the optical tilt angle in the SmC* phases reaches values up to 30°, temperature-dependent SAXS measurements clearly reveal that the smectic layer spacing is basically conserved during the A*-C* transition as well as in the subsequent C* phase. Connected with the A*-C* transition we further observed a significant increase in birefringence, hence reflecting an increase of orientational order. The practical absence of layer shrinkage and the enhanced orientational ordering are consistent with the de Vries diffuse cone model of smectic A-smectic C transitions.  相似文献   

8.
This paper compares smectic phases formed from LC-homo- and LC-co-polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the copolysiloxanes mesogenic repeating units are separated by dimethylsiloxane units. Despite a rather similiar phase sequence of the homo- and co-polysiloxanes—higher ordered smectic, smectic C* (SmC*), smectic A (SmA) and isotropic—the nature of their phases differs strongly. For the copolymers the phase transition SmC* to SmA is second order and of the 'de Vries' type with a very small thickness change of the smectic layers. Inside the SmA phase, however, the smectic thickness decreases strongly on approaching the isotropic phase. For the homopolymer the phase transition SmC* to SmA is first order with a significant thickness change, indicating that this phase is not of the 'de Vries' type. This difference in the nature of the smectic phases is probably a consequence of microphase separation in the copolymer, which facilitates a loss of the tilt angle correlation between different smectic layers. This has consequences for the mechanical properties of LC-elastomers formed from homo- and co-polymers. For the elastomers from homopolymers the smectic layer compression seems to be rather high, while it seems to be rather small for the copolymers.  相似文献   

9.
Using a photoelastic modulator-based novel set-up, the electric field-induced in-plane birefringence and the optical rotatory power (ORP) were measured of an antiferroelectric liquid crystalline compound (12OF1M7) in its various phases using 30 µm homeotropic cells. Some specific signatures of the in-plane birefringence and of the ORP for the various phases are being established. A relatively small threshold field is needed for the unwinding process of the antiferroelectric phase with a unit cell of four layers [SmCA*(1/2)] compared with that for two layers [SmCA*(0)]. On application of the electric field on the high temperature side of the SmCA*(1/2) phase (80.1-81.5°C), a field-induced phase transition is shown to occur directly to the SmC* phase, whereas on the lower temperature side (79.4-80.1°C) the transition takes place to SmC* via the SmCA*(1/3) phase. The in-plane birefringence exhibits a critical power law dependence for the SmC*-SmA transition. The ORP changes sign within the temperature range of the phase with a unit cell of three layers, reflecting a change in the handedness during this phase. Using tilted conoscopy, the results for the biaxiality and the apparent tilt angle for a smectic liquid crystal with a tilt angle greater than 18° in the ferroelectric phase are reported. The biaxiality implies the difference in the refractive indices between the two minor axes of the refractive index ellipsoid. The optical transmittance at visible and IR wavelengths for free-standing films reveal characteristic reflection bands for these phases. The modulated structures of the reflected bands appear just above the SmCA* phase and below SmCA*(1/3); these are possibly due to an easy deformation of the phase by the surfaces.  相似文献   

10.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

11.
This paper compares smectic phases formed from LC‐homo‐ and LC‐co‐polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the copolysiloxanes mesogenic repeating units are separated by dimethylsiloxane units. Despite a rather similiar phase sequence of the homo‐ and co‐polysiloxanes—higher ordered smectic, smectic C* (SmC*), smectic A (SmA) and isotropic—the nature of their phases differs strongly. For the copolymers the phase transition SmC* to SmA is second order and of the ‘de Vries’ type with a very small thickness change of the smectic layers. Inside the SmA phase, however, the smectic thickness decreases strongly on approaching the isotropic phase. For the homopolymer the phase transition SmC* to SmA is first order with a significant thickness change, indicating that this phase is not of the ‘de Vries’ type. This difference in the nature of the smectic phases is probably a consequence of microphase separation in the copolymer, which facilitates a loss of the tilt angle correlation between different smectic layers. This has consequences for the mechanical properties of LC‐elastomers formed from homo‐ and co‐polymers. For the elastomers from homopolymers the smectic layer compression seems to be rather high, while it seems to be rather small for the copolymers.  相似文献   

12.
Collective relaxation processes are completely undetectable in a ferroelectric liquid crystal confined in porous Anopore membranes, as a result of perfect orientation of the smectic layers perpendicular both to the long axis of the pores and the direction of the measuring electric field. In the ferroelectric liquid crystal – Anopore composite only one relaxation process, assigned to rotation of the molecule around the molecular short axis, appears throughout all smectic phases. The temperature dependence of the relaxation frequency and of the dielectric strength of this process also shows no irregularity at the point of polarization sign reversal. The temperature dependence of the relaxation frequency follows the Arrhenius law with an activation energy slightly higher in the ferroelectric SmC* phase. Analysis of the non‐linear changes of temperature dependence of the dielectric strength at the SmA–SmC* phase transition enables one to obtain the temperature dependence of the tilt angle of the molecules in the SmC* phase in the Anopore membrane. Dielectric measurements confirm the existence of the tilted smectic phase in Anopore cylindrical channels with no tilt anomaly at the point of polarization sign reversal.  相似文献   

13.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

14.
The substance MHPOBC is the oldest and still most important reference antiferroelectric liquid crystal (AFLC). There is still considerable controversy concerning the correct phase designations for this material and, in particular, about the presence or absence of SmC* in its phase sequence. By means of dielectric spectroscopy and polarizing microscopy, we show that whereas the pure compound lacks the SmC* phase, this phase rapidly replaces the SmC*β subphase through the reduced purity resulting from temperature-induced chemical degradation which is hard to avoid under standard experimental conditions. X-ray investigations furthermore show that this change in phase sequence is coupled to a decrease in translational order. This explains the large variations in the reported phase sequence and electro-optic behaviour of MHPOBC, in particular concerning the SmC*β phase which has been said to exhibit ferro-, ferri- as well as antiferroelectric properties. It is likely that the sensitivity of the AFLC phase sequence to sample purity is a general property of AFLC materials. We discuss the importance of optical and chemical purity as well as tilt and spontaneous polarization for the observed phase sequence and propose that one of the key features determining the existence of the different tilted structures is the antagonism between orientational (nematic) and translational (smectic) order. The decreased smectic order (increased layer interdigitation) imposed by chemical impurities promotes the synclinic SmC* phase at the cost of the AFLC phases SmC*α, SmC*β, SmC*γ and SmC*a. We also propose that the SmA* phase in FLC and AFLC materials may actually have a somewhat different character and, depending on its microstructure, some of the tilted phases can be expected to appear or not to appear in the phase sequence. AFLC materials exhibiting a direct SmA* -SmC*a transition are found to be typical ‘de Vries smectics’, with very high orientational disorder in the SmA* phase. Finally, we discuss the fact that SmC*β and SmC*γ have two superposed helical superstructures and explain the observation that the handedness of the large scale helix may very well change sign, while the handedness on the unit cell level is preserved.  相似文献   

15.
《Liquid crystals》2012,39(15):2115-2126
ABSTRACT

Phase behaviour and structural properties of two members of biphenylyl benzoate chiral mesogenic series (2F3R and 3F3R) have been investigated. While both the compounds exhibit SmC* phase over a wide temperature range, 2F3R forms orthogonal SmA* from tilted SmC* on heating but 3F3R melts directly to the isotropic phase. The SmA* phase of 2F3R is found to have de vries characteristics with small effective layer contraction. Both the samples on cooling form hexagonal SmF* phase below SmC* phase. On further cooling soft crystal like hexagonal SmJ* phase is formed in 2F3R, undergoing a change in the tilt direction, but in 3F3R, SmG* phase is formed without any change in the tilt direction. A coexistence phase of (SmC*+SmF*) is also observed in a certain temperature range. Slight differences in the dipole moment and molecular conformation of the two molecules give rise to a subtle change in the intermolecular interaction and play an important role in the appearance of different phases in the two compounds. Cell parameters of SmF*, SmG*, SmJ* phases have also been determined. Layer spacings, tilt angles, average intermolecular spacings and correlation lengths have been measured. How some of these properties compare with other members of the series has been discussed.  相似文献   

16.
High resolution calorimetric studies have been carried out on the chiral compound methylheptyloxydifluorooctyloxybenzoyloxytolane (8BTF2O1M7). The tilt tendency is greater in this compound than in several other structurally similar fluorinated tolane liquid crystals, and it exhibits tilted chiral smectic C(SmC*) and tilted twist-grain-boundary (TGBC) phases but not the untilted SmA or TGBA phases. The data confirm the presence of two tilted TGBC phases denoted TGB1 and TGB2. The TGB1-TGB2 first-order transition exhibits considerable hysteresis and a very small latent heat. There is no rounded excess heat capacity peak in the cholesteric N* phase associated with the non-transitional evolution of a chiral line liquid N*L, although such a feature has been observed in other fluorinated tolanes with a smaller tilt tendency.  相似文献   

17.
A homologous series of fluoro-substituted chiral liquid crystals derived from (S)-lactic acid and alkoxyethanols were prepared for investigation. Mesophases and their corresponding transition temperatures were identified by polarized optical microscopy and differential scanning calorimetry. The compounds exhibit a broad temperature range in the ferroelectric chiral smectic C (SmC*) phase; in particular, compounds with shorter alkyl chain lengths have an SmC* phase at ambient temperature. The physical properties of the ferroelectric SmC* phase, such as switching current, spontaneous polarization, optical tilt angle and electro-optical response, were also measured. The effects of fluoro substituent on the mesophases and physical properties of the chiral liquid crystals are discussed.  相似文献   

18.
Two series of new liquid crystalline lactic acid derivatives with a terminal ester group have been synthesised. The effect of this ester unit and the length of its alkyl chain on the mesomorphic and dielectric properties of the compounds exhibiting a broad temperature range of chiral smectic phases have been studied. We found that the mesomorphic behaviour and phase transition temperatures are strongly affected by the molecular architecture. Depending on the alkyl chain length in the terminal ester unit, the studied materials exhibited paraelectric smectic A*, ferroelectric tilted smectic C* and antiferroelectric smectic CA* phases over a broad temperature range. The physical properties of the compounds have been studied by optical polarising microscopy, differential scanning calorimetry, electro-optic measurements, small-angle X-ray scattering and dielectric spectroscopy. Furthermore, the homologues with short terminal alkyl chains showed a very small layer shrinkage at the transition from the orthogonal SmA* to the tilted SmC* phase, which is a characteristic feature of ‘de Vries-type’ behaviour.  相似文献   

19.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

20.
New series of lactic acid derivatives with alkyl terminal chain have been synthesised and their mesomorphic properties studied. We have varied the length of chiral and non-chiral terminal alkyl chains and found that prolonging both chains has a strong effect on the SmA*–SmC* phase transition. Most of the new materials exhibit only paraelectric SmA* phase; for homologues with a longer non-chiral chain (m ≥ 10), the ferroelectric (SmC*) phase appears below the SmA* on cooling and persists down to a room temperature. The role of the chiral terminal chain in the molecule is quite opposite – only its short length supports the existence of ferroelectric phase. Additionally, a hexatic phase appeared below the SmA*–SmC* phase sequence for several homologues at low temperatures. All materials have been studied using standard experimental techniques (differential scanning calorimetry (DSC), texture observations, polarisation and tilt angle measurements, etc.). Liquid crystalline properties of new materials have been compared with the previously prepared and studied lactic acid derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号