首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Prussian blue-modified nanoporous gold film (PB-NPGF) electrode was fabricated in this study. The fabrication was realized through electrodeposition of Prussian blue nanoparticles on the skeleton of a nanoporous gold film electrode without destroying the porous structure of NPGF electrode. The resulting PB-NPGF composite electrode showed very high electrocatalytic activity, repeatability, and stability to the reduction of H2O2. For instance, its activity was about twenty times that of the PB-modified polished gold electrode. More importantly, the sensitivity of the PB-NPGF composite electrode reaches as high as 10.6 μA μM−1 cm−2. This PB-NPGF composite electrode is very promising in the fields of catalysis, analysis, and so on.  相似文献   

2.
Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H2SO4 to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm2.  相似文献   

3.
2D arrayed Pt columns with 3D-nanoporous structure were fabricated by electroplating Pt in reverse micelle (L2) solution of a nonionic surfactant filled in 1D microchannels of alumina porous membrane. This thin film features a unique hybrid system consisting of nanoporous structure embedded in the secondary microstructure, which is increasingly of great importance in terms of maximal efficacy of the interfacial properties of nanoporous surface. The diameter of the 3D-nanoporous pillars was ~300 nm and the length was precisely controlled by the electroplating condition. This is the first report of the hybrid 3D-nanoporous micro-columnar metal film by one-step electrochemical deposition in a reverse micelle solution.  相似文献   

4.
A simple and rapid approach for the electrochemical synthesis of Ag nanoparticles-coated gold nanoporous film (AgGNF) on a gold substrate was reported. The solid gold electrode (SGE) was directly anodized under a high potential of 5 V, and then reduced to obtain gold nanoporous film (AuNF) by freshly prepared ascorbic acid. The Ag nanoparticles (AgNPs) were grown on the AuNF electrode by potential-step electrodeposition. The resulting AgGNF composites electrodes were characterized by scanning electron micro...  相似文献   

5.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

6.
通过对电沉积法得到的Ni-Cu合金镀层进行电化学去合金化处理, 制备了纳米多孔结构金属镍膜. 采用循环伏安法对多孔金属镍膜在1 mol·L-1 KOH溶液中进行阳极氧化处理, 获得了纳米多孔结构的镍基复合膜电极. 应用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的膜电极的物理性质及赝电容特性进行了表征. SEM、XRD和XPS的测试结果表明, 所制备的纳米多孔结构镍基复合膜由Ni、Ni(OH)2和NiOOH组成. 电化学实验结果显示, 该复合膜在20 A·g-1的充放电电流密度下, 给出了578 F·g-1的初始比电容; 在1000次充放电循环后, 它的比电容值为544 F·g-1, 电容保持率为94%. 纳米多孔结构有利于KOH电解液的渗透, 从而促进反应物种在电极内部的传输; 纳米多孔的金属镍基体可以提高Ni(OH)2膜的电子导电性; 纳米大小的Ni(OH)2颗粒能够缩短质子的固相扩散路径. 上述因素是所制备的纳米多孔结构镍基复合膜电极具有优异赝电容特性的主要原因.  相似文献   

7.
(3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.  相似文献   

8.
A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10?7 M to 2.0 × 10?5 M while the calculated limit of detection was 7.2 × 10?8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.  相似文献   

9.
The influence of hydrofluoric acid (HF) concentration and applied potential on the processes of anodic oxidation of Nb in sulphuric acid solution was studied by chronoamperometry, electrochemical impedance spectroscopy and scanning electron microscopy. During the first stage of the process, a compact barrier film is formed. On top of this film, a porous overlayer starts to form, then the nanopores grow into an ordered nanostructure. Subsequently, secondary 3D flower-shaped structures begin to form. These structures gradually spread all over the surface as an irregular multilayer film. The rates of the process of porous overlayer formation and subsequent growth of nanopore arrays increase with applied potential as well as with the HF concentration. The films have been characterised ex situ by electrochemical impedance spectroscopy at open circuit potential and capacitance vs. potential measurements to follow the different stages of nanoporous film formation with electrochemical methods. The impedance spectra and capacitance vs. potential curves have been interpreted using previously proposed models for the amorphous semiconductor/electrolyte interface. An attempt to rationalise the mechanism of nanoporous layer growth is presented by using the conceptual views of the mixed-conduction model and recent ideas for porous film formation on valve metals.  相似文献   

10.
A hierarchical porous MnO2-based electrode was prepared and its electrochemical performance for electrochemical capacitors was investigated. In this work, porous MnO2 film with pore size of 2?C3?nm in diameter was deposited on a three-dimensional porous current collector by cathodic electrodeposition associated with subsequent controlled heat treatment at 200°C for 2?h. Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the heat treatment has a great effect on the formation of the porous structure of MnO2 layer, and the disordered porous structure was caused by dehydration during the heat treatment. Cyclic voltammetry and galvanostatic charge?Cdischarge tests showed that both energy and power densities are enhanced due to the unique hierarchical porous structure. The electrode delivers a high specific capacitance of 385?F?g?1 at a high current density of 5?A?g?1 within a potential window of ?0.05????0.85?V, and also exhibits excellent rate capability and electrochemical stability.  相似文献   

11.
In this work, we employ differential electrochemical mass spectrometry (DEMS) to track the real-time evolution of CO at nanoporous gold (NpAu) catalysts with varying pore parameters (diameter and length) during the electrochemical CO2 reduction reaction (CO2RR). We show that due to the increase in the local pH with increasing catalyst roughness, NpAu catalysts suppress the bicarbonate-mediated hydrogen evolution reaction (HER) compared to a flat Au electrode. Additionally, the geometric current density for CO2RR increases with the roughness of NpAu catalysts, which we attribute to the increased availability of active sites at NpAu catalysts. Together, the enhancement of CO2RR and the suppression of competing HER results in a drastic increase in the faradaic selectivity for CO2RR with increasing pore length and decreasing pore diameter, reaching near 100% faradaic efficiency for CO in the most extreme case. Interestingly, unlike the geometric current density, the specific current density for CO2RR has a more complicated relation with the roughness of the NpAu catalysts. We show that this is due to the presence of ohmic drop effects along the length of the porous channels. These ohmic drop effects render the pores partially electrocatalytically inactive and hence, they play an important role in tuning the CO2RR activity on nanoporous catalysts.

In this work, we employ differential electrochemical mass spectrometry (DEMS) to track the real-time evolution of CO at nanoporous gold (NpAu) catalysts with varying pore parameters (diameter and length) during the electrochemical CO2 reduction reaction (CO2RR).  相似文献   

12.
《中国化学快报》2020,31(9):2235-2238
We report a convenient method to synthesize O, N-codoped hierarchical porous carbon by one-step carbonization of the mixture of KHCO3, urea and alginic acid. Benefiting from KHCO3 and urea synergistic effect, the obtained O, N-codoped hierarchical porous carbon (NPC-700) material has a well-developed interconnected porous framework with ultrahigh specific surface area (2846 m2/g) and massive heteroatoms functional groups. Consequence, such porous carbon displays high specific capacitance (324 F/g at 1 A/g), excellent rate performance (212 F/g at 30 A/g) and good electrochemical stabilization in 6 mol/L KOH solution. More importantly, the assembled NPC-700//NPC-700 symmetrical supercapacitor can achieve a high energy density of 18.8 Wh/kg and good electrochemical stabilization in 1 mol/L Na2SO4 solution. This process opens up a new way to design heteroatoms-doped hierarchical porous carbon derived from biomass materials for supercapacitors.  相似文献   

13.
An ultrathin CoO layer is deposited on the skeleton surfaces of a nanoporous gold (NPG) film by using atomic layer deposition, creating a flexible electrode. Detailed characterization demonstrates the superior performance of the flexible NPG/CoO hybrids for electrochemical catalysis. The NPG/CoO hybrid not only achieves high catalytic activity for glucose oxidation and H2O2 reduction, but also exhibits a linear dependence of the electrical signal on the concentration of glucose and H2O2 molecules in the electrolyte. Meanwhile, the sensitivity for H2O2 reduction can be as high as 62.5 μA mm ?1 cm?2 with linear dependence on the concentration in the range of 0.1–92.9 mm . The high sensitivity is proposed to result from the synergistic effect of Au and CoO at the interfaces, and the high conductivity of the gold skeleton with a large surface area. The superior electrochemical performance of this hybrid electrode is promising for future potential applications in various transitional‐metal‐oxide‐based electrochemical electrodes.  相似文献   

14.
A class of nanoporous TiO2 gas sensors processed by novel anodic aluminum oxidation (AAO) of Al thin films and microelectromechnical systems (MEMS) techniques are presented. To enhance the sensitivity and reduce the sensing dimensions of a gas sensor, a nanoporous surface of the gas-sensitive material on the sensor is required. These sensors can be implemented on silicon or silicon dioxide substrate featuring a thin membrane of micro-hotplate structure featuring micro-heaters, thermometers and electrodes, and thus operate as chemoresistive devices. Combining the AAO method with dry-etch process, a homogeneous and nanoporous SiO2 surface of the sensor can be effectively configured by modulating various hole diameters and depth, hence replacing conventional photolithography and electrochemical etch. The process integration including AAO, reactive ion etch (RIE) and microfabrication is mainly developed and a feasibility study of PVD TiO2 thin film deposition upon the porous device is also provided. TiO2 thin films deposited on the nanoporous surface are investigated and compared with non-porous TiO2 films. It is encouraging that our fabrication process is able to provide relatively high surface area to enhance sensitivity of the sensor without additional doping steps. Our promising experimental results have revealed these miniature and cost-effective devices are not only compatible, but applicable to smart bio-chemical sensors of next generation.  相似文献   

15.
A uniform three-dimensional (3D) gold nanoparticle (AuNP)-embedded porous graphene (AuEPG) thin film has been fabricated by electrostatic layer-by-layer assembly of AuNPs and graphene nanosheets functionalized with bovine serum albumin and subsequent thermal annealing in air at 340 °C for 2 h. Scanning electron microscopy (SEM) investigations for the AuEPG film indicate that an AuNP was embedded in every pore of the porous graphene film, something that was difficult to achieve with previously reported methods. The mechanism of formation of the AuEPG film was initially explored. Application of the AuEPG film in electrochemical sensing was further demonstrated by use of H(2)O(2) as a model analyte. The AuEPG film-modified electrode showed improved electrochemical performance in H(2)O(2) detection compared with nonporous graphene-AuNP composite film-modified electrodes, which is mainly attributed to the porous structure of the AuEPG film. This work opens up a new and facile way for direct preparation of metal or metal oxide nanoparticle-embedded porous graphene composite films, which will enable exciting opportunities in highly sensitive electrochemical sensors and other advanced applications based on graphene-metal composites.  相似文献   

16.
17.
A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy film sthrough vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.  相似文献   

18.
对淀积在玻璃衬底上厚度约60 nm的金银合金溅射薄膜进行硝酸腐蚀脱银处理, 得到纳米多孔金薄膜. 利用自建的波长检测型表面等离子体共振(SPR)传感装置研究了腐蚀时间对纳米多孔金薄膜SPR特性的影响, 结果发现纳米多孔金薄膜与水溶液接触后在400-900 nm光谱范围内不具有SPR效应, 而当薄膜置于空气中时会产生明显的传播等离子体共振吸收峰, 其共振波长随腐蚀时间增加逐渐红移. 纳米多孔金薄膜在空气气氛中的SPR效应使其能够用于原位监测气相分子在孔内的吸附, 还可对在液相中吸附的生化分子进行离位测试. 本文对L-谷胱甘肽、L-半胱氨酸、2-氨基乙硫醇三种含巯基的生化小分子在纳米多孔金薄膜内的吸附进行了离位分析, 结果表明与传统的致密金薄膜SPR芯片比较, 纳米多孔金薄膜对这些分子显示出更高的灵敏度和更低的检测下限, 这归功于多孔金的大比表面积使其能够吸附大量的生化小分子. 实验还对乙醇蒸气在纳米多孔金薄膜内的吸附进行了原位监测, 发现吸附平衡所用时间较长, 约为160 min.  相似文献   

19.
We have prepared porous and network-like nanofilms of gold by galvanic replacement of a layer of copper particles acting as a template. The films were first characterized by scanning electron microscopy and X-ray diffraction, and then modified with cysteamine so to enable the covalent immobilization of the enzyme microperoxidase-11. The immobilized enzyme undergoes direct electron transfer to the underlying electrodes, and the electrode displays high electrocatalytic activity towards the reduction of oxygen and hydrogen peroxide, respectively, owing to the largely enhanced electroactive surface of the porous gold film. The detection limit of H2O2 is 0.4 μM (3 S/N).
Figure
In this work, porous network-like Au films were prepared by galvanic replacement using Cu film as a sacrificial template. The cysteamine modified Au film was used to immobilize microperoxidase-11, which showed good stability and excellent electrochemical performance towards the reduction of O2 and H2O2, respectively  相似文献   

20.
Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of ascorbic acid (AA) on palladium coated nanoporous gold film (PdNPGF) electrode. The deposition of palladium was done through oxidation of copper UPD layer by palladium ions. This low Pd‐loading electrode behaved as the nanostructured Pd for electrocatalytic reaction. The PdNPGF electrode exhibits excellent electrocatalytic behavior by enhancing the AA oxidation peak current due to synergistic influence of the Pd film and NPGF. The kinetic parameters such as electron transfer coefficient, α, was 0.47 and the voltammetric responses of the PdNPGF electrode were linear against concentration of AA in the ranges of 2.50–33.75 mM and 0.10–0.50 mM with CV and DPV respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号