首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

2.
The fluorescence excitation and dispersed fluorescence spectra of the open-ring isomer of 1,2-bis(3-methyl-2-thienyl)perfluorocyclopentene have been measured in a supersonic free jet. No vibronic structure has been observed in the excitation spectrum. The intensity of fluorescence gradually increases with the excitation energy in the 25,500–28,700 cm−1 region, indicating that the geometry of the molecule substantially changes upon photoexcitation. The dispersed fluorescence spectrum is anomaly Stokes-shifted with respect to the excitation energy, suggesting that the S2(1B) state is initially excited followed by rapid internal conversion from the S2(1B) to S1(2A) state. The fluorescence is due to the S1(2A)–S0(1A) transition. Density functional theory calculations at the B3LYP/6-31G** level have been carried out to investigate stable conformations responsible for the observed spectra.  相似文献   

3.
The phosphorescence quantum yield of benzaldehyde vapour was measured at low pressure (down to 2 mtorr) as a function of excitation wavelength. The quantum yield is essentially constant in the range of excitation energy corresponding to the S1(n,π*) state, but it decreases very rapidly as the excitation energy is raised to the value corresponding to S2(π,π*), indicating that the phosphorescence property of the benzaldehyde molecule varies, depending on the nature of the singlet state to which the molecule is initially excited.  相似文献   

4.
The T1,2 ← S0 spectra of benzaldehydes have been studied as a function of the energy separation between the vibrationless levels. It is shown that the spectra are very complicated in the region of ΔE[T20(nπ*)-T10(ππ*)] = 250–400 cm−1, reflecting effective vibronic interferences between T20(0-0) and each of the ν3633 out-of-plane vibrational levels of T10(ππ*). The simulated spectra correspond to the observed spectra. In the case of T10 = 3* and T20 = 3ππ* the spectral change is not so drastic as in the reverse case loc. cit. because the optical intensity generally concentrates in the longest wavelength band, i.e., the origin band of the T1(nπ*) ← S0 transition. The simulation spectra are useful for interpretation of the absorption spectra in similar electronic structure systems of substituted benzaldehydes.  相似文献   

5.
The X-ray structure of [S4N3]Cl reveals three independent molecules, which all display π-facial interactions between the Cl and the pseudo-aromatic [S4N3]+ rings to produce a structure containing “inverse sandwich” systems.  相似文献   

6.
The quantum yield ratio r = φ2 → 02 → 1 of the S2 → S0 and S2 → S1 fluorescences from azulene has been redetermined. With azulene in isopentane at 190 K, r = 455 ± 100. This value agrees with the lower limit, given by Huppert, Jortner and Rentzepis, but is an order of magnitude lower than that given by Gillispie and Lim.  相似文献   

7.
The performance of ab initio calculations for the ground and excited states of the Pt(saloph) complex is examined in detail. The S0–Si and T1–Ti absorption spectra are calculated, and the transition between the ground S0 state and the excited S1 state involves the HOMO-2, HOMO-1, HOMO and LUMO. Moreover, calculations show that the emissive singlet is of mixed MLCT/LLCT characteristic. On the other hand, the molecular geometry of the complex is nearly planar in the ground state while the geometry is obviously nonplanar in the excited state of S1(π, π*) in the gas phase.  相似文献   

8.
Ab initio configuration interaction calculations with a double zeta basis augmented by polarisation functions have been carried out for all the lowest singlet and triplet states of S2N2 and (SN)2) - a unit of the polymer (SN)x. The results satisfactory account for the UV-absorption spectrum of S2N2 which is probably dominated by 1B2u. There are low-lying singlet and triplet states for (SN)2, and one of these a σσ* triplet seems likely to be the polymerisation precursor.  相似文献   

9.
Steady-state and time-resolved emission for spectroscopic techniques at 77 K, and molecular orbital calculations using PM3-MOPAC/93 and HAM/3-CI have been used to study the two forms of harmane, the neutral (HN) and the monoprotonated (HH), in different environments. In hydrophobic media, for (HN), four species were determined and in hydrophilic medium, for (HH), we found just one species. The photophysical properties of all these species were determined, and we verified that each one of them displays distinct photophysical properties from one to another. For example, for monomer of (HN), the lowest electronic singlet state S1 is (π,π*) and the lowest electronic triplet state T1 is (π,π*), due to the phosphorescence lifetime it is t=0.8 s. For the (HH) monomer, the S1 is (π,π*) and T1 is (π,π*) and the spin–orbital coupling is inefficient. These determinations were used to characterise and to identify the harmane species that is solubilised into the interior of neutral (triton X-100), anionic (dodecyl lithium sulphate) and cationic (hexadecyltrimethyl ammonium bromide) micelles, all of them were prepared under physiological conditions. The results indicated that active species in the interior of the micelles is a hydrogen bond complex between (HN) and micellar environments that is anchored in the aqueous region of micelles.  相似文献   

10.
李丹  薛佳丹  郑旭明 《物理化学学报》2014,30(12):2216-2223
通过共振拉曼光谱实验和量子化学计算的方法研究了4-硝基咪唑(4NI)A-带激发态衰变动力学.对4NI的振动光谱、紫外电子吸收光谱、荧光光谱和共振拉曼光谱进行了指认.在全活化空间自洽场法(CASSCF)/6-31G(d)计算水平下获得了单重激发态S1(nOπ*)和S2(ππ*)和势能面交叉点S1(nOπ*)/S2(ππ*)的优化几何结构和能量,分析了A-带共振拉曼光谱的强度模式特征,获得了短时结构动力学,并结合全活化空间自洽场法(CASSCF)理论计算结果确定了4NI在S2(ππ*)态衰变通道主要是S2,FC→S2,min(ππ*)→S0辐射弛豫.  相似文献   

11.
The role of electron and proton transfer processes in the photophysics of hydrogen-bonded molecular systems has been investigated with ab initio electronic-structure calculations. We discuss generic mechanisms of the photophysics of a hydrogen-bonded aromatic pair (pyrrole–pyridine), as well as an intra-molecularly hydrogen-bonded π system composed of the same molecular sub-units (2(2′-pyridyl)pyrrole). The reaction mechanisms are discussed in terms of excited-state minimum-energy paths, conical intersections and the properties of frontier orbitals. A common feature of the photochemistry of these systems is the electron-driven proton transfer (EDPT) mechanism. In the hydrogen-bonded complex, a highly polar charge transfer state of 1ππ* character drives the proton transfer, which leads to a conical intersection of the S1 and S0 surfaces and thus ultrafast internal conversion. In 2(2′-pyridyl)pyrrole, out-of-plane torsion is additionally needed for barrierless access to the S1–S0 conical intersection. It is pointed out that the EDPT process plays an essential role in the fluorescence quenching in hydrogen-bonded aromatic complexes, the function of organic photostabilizers, and the photostability of biological molecules.  相似文献   

12.
13.
The reaction between RMgCl (two equivalents) and 1,2-W2Cl2(NMe2)4 in hydrocarbon solvents affords the compounds W2R2(NMe2)4, where R = allyl and 1− and 2-methyl-allyl. In the solid state the molecular structure of W2(C3H5)2(NMe2)4 has C2 symmetry with bridging allyl ligands and terminal W---NMe2 ligands. The W---W distance 2.480(1) Å and the C---C distances, 1.47(1) Å, imply an extensive mixing of the allyl π-MOs with the WW π-MOs, and this is supported by an MO calculation on the molecule W2(C3H5)2(NH2)4 employing the method of Fenske and Hall. The most notable interaction is the ability of the (WW)6+ centre to donate to the allyl π*-MO (π3). This interaction is largely responsible for the long W---W distance, as well as the long C---C distances, in the allyl ligand. The structure of the 2-methyl-allyl derivative W2(C4H7)2(NMe2)4 in the solid state reveals a gauche-W2C2N4 core with W---W = 2.286(1) Å and W---C = 2.18(1) Å, typical of WW and W---C triple and single bonds, respectively. In solution (toluene-d8) 1H and 13C NMR spectra over a temperature range −80°C to +60°C indicate that both anti- and gauche- W2C2N4 rotamers are present for the 2-methyl-allyl derivative. In addition, there is a facile fluxional process that equilibrates both ends of the 2-methyl-allyl ligand on the NMR time-scale. This process leads to a coalescence at 100°C and is believed to take place via an η3-bound intermediate. The 1-methyl-allyl derivative also binds in an η1 fashion in solution and temperature-dependent rotations about the W---N, W---C and C=C bonds are frozen out at low temperatures. The spectra of the allyl compound W2(C3H5)2(NMe2)4 revealed the presence of two isomers in solution—one of which can be readily reconciled with the presence of the bridging isomer found in the solid state while the other is proposed to be W23-C3H5)2(NMe2)4. The compound W2R2(NMe2)4 where R = 2,4-dimethyl- pentadiene was similarly prepared and displayed dynamic NMR behaviour explainable in terms of facile η1 = η3 interconversions.  相似文献   

14.
In this paper we report on the structure and vibrations of gaseous pyrogallol (1,2,3-trihydroxybenzene) in the electronic ground state (S0) and its first electronically excited state (S1). Both ab initio CASSCF/CASMP2 calculations as well as R2PI spectroscopy have been performed. From the ab initio calculations three minimum energy structures are obtained and the vibrations of two structures are observed in the R2PI spectra. The minimum energy structures differ by their OH torsional angles. The full three-dimensional potential energy surface of the coupled torsional motions is investigated and the three-dimensional eigenvalues are calculated. The most stable structure of pyrogallol contains two intramolecular hydrogen bonds and turns out to be planar in the S0 state. In the S1 state the free OH group is rotated out of the plane of the aromatic ring by about 40°. The strong change in geometry of this structure is predicted by the CASSCF calculations and confirmed by the R2PI spectra of pyrogallol and its deuterated species. The low frequency region of the R2PI spectra can be explained by a torsional motion and the out of plane vibration 17b.  相似文献   

15.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

16.
The S1↔S0 transitions of two conformers of 1,8-bis(dimethylamino) naphthalene, the “proton sponge”, have been studied by semiempirical AM1 calculations. They reveal that “inversion of states” occurs in the asymmetric conformer DMAN-2, which in the gas phase may be emitted from the 1La state in comparison to the 1Lb state in symmetric DMAN-1. It was also concluded that because of the mixed character of the HOMO-1 orbital in both conformers, a certain CT contribution to the S0↔S1 transition has to be taken into account. The calculated maxima of absorption and emission have been compared to those experimentally obtained in supersonic expansion.  相似文献   

17.
Two Schiff bases N,N′-(bis(pyridin-2-yl)benzylidene)propane-1,3-diamine (pbpd) and N,N′-(bis(pyridin-2-yl)formylidene)butane-1,4-diamine (pfbd) have been prepared and used to synthesize copper(II) complexes. Four complexes of the type [Cu(L)(N3)]X (1–4) [L = pbpd; X = ClO4 (1); L = pbpd; X = PF6 (2); L = pfbd; X = ClO4 (3); L = pfbd; X = PF6 (4)] have been synthesized and characterized on the basis of microanalytical, spectroscopic, magnetic, electrochemical, luminescence and other physicochemical properties. Two representative complexes of the series, 2 and 3, have been characterized by single crystal X-ray diffraction measurements which reveal that in each complex the copper(II) ion assumes a distorted trigonal bipyramidal environment through coordination of the metal centre by two pyridine N atoms and two imine N atoms of the Schiff base with the fifth position occupied by a N atom of a terminal . They display intraligand 1(π–π*) fluorescence at room temperature and intraligand 3(π–π*) phosphorescence in glassy solutions (MeOH at 77 K). A band (492 nm) observed for the complexes in their solid-state emission spectra is an excimeric emission arising due to an aromatic π–π interaction. Electrochemical electron transfer study reveals CuII–CuI reduction in methanolic solutions.  相似文献   

18.
The photophysical properties of two new tetra substituted derivatives of pyrene: 1,3,6,8-tetraethynylpyrene (TEP) and 1,3,6,8-tetrakis(trimethylsilylethynyl)pyrene (TEP-TMS) have been studied. Studies were done with respect to mirror image symmetry in the absorption and emission spectra and permissive or forbidden nature of S0–S1 transition, solvent sensitivity of the first and third vibronic bands and fluorescence anisotropy. Both the derivatives exhibited a strongly allowed S0–S1 transition, high fluorescence quantum yield, shorter fluorescence lifetime compared to pyrene and invariance of the vibronic band intensity ratio to solvent polarity. The behavior of the two pyrene derivatives validates the hypothesis “solvent polarity mediates vibronic coupling and therefore the emission band intensities, for forbidden S0–S1 transitions”. The trimethylsilyl derivative (TEP-TMS) was characterized by a strong fluorescence in solid state. The tetraethynyl derivative (TEP) showed high fluorescence anisotropy comparable to the well-known anisotropy probe DPH in glycerol at 0 °C. The fluorescence intensities of TEP and TEP-TMS did not show any significant change in the temperature ranger 0–40 °C for a low viscous solvent like ethanol and in the range 0–60 °C in glycerol. Unlike pyrene, no excimer emission was observed even up to 10−3 M for TEP and TEP-TMS.  相似文献   

19.
By using femtosecond time-resolved stimulated emission pumping fluorescence depletion (FS-TR-SEP-FD), we present a fluorescence depletion study of chlorophyll a (Chl a) in various solvent environments. Internal conversion times (IC) in different solvents are observed. It is found that all the S3 and S2 to S1 transition processes are extremely fast, and that the time constants of these processes range from 100 to 260 fs. In aprotic solvent, the rate of IC decreases with an increasing of solvent polarity.  相似文献   

20.
Electronic structure and singlet–singlet and triplet–triplet absorption spectra of 3-ethyl-lumiflavin were calculated using time-dependent density functional theory (TD-DFT) methods. The measured lower-energy transitions are well reproduced in calculations, which are limited by the neglect of the solvent interactions. All the observable singlet–singlet and triplet–triplet transitions have π–π* character. Singlet oxygen production by the studied compound demonstrated that, similar to other lumiflavins, it is an efficient singlet oxygen sensitizer (Δ = 0.55). Radiationless deactivation of the S1 state in solutions was shown to result in the T1 state formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号