首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
A simple, rapid and inexpensive procedure for extraction and analysis of volatile halocarbons in water samples was presented using the headspace single-drop microextraction (HS-SDME) technique and gas chromatography with microcell electron capture detector (GC-μECD). Operation parameters. such as extraction solvent. headspace volume. organic drop volume. salt concentration. temperature and sampling time, were studied and optimized. Extraction of 10 volatile halocarbon compounds was achieved using the optimized method. Calibration curves of 10 target compounds yielded good linearity in the respective range of concentration (R 2 ≥ 0.9968, chlorodibromomethane in the concentration range of 0.05–50 μg/L). The limits of detection were found between 0.002 (tetrachloroethene) and 0.374μg/L (1,1,2-trichloroethane). and relative standard deviations (RSD%) ranged between 4.3 (chloroform) and 9.7% (1,1,2,2-tetrachloroethane). Spiked recoveries of tap water and ground water agreed well with the known values between 118.97 (20.0μg/L of 1,1,2-trichloroethane) and 82.61% (10.0μg/L of tetrachloroethene), demonstrating that the HS-SDME combined GC-μECD was a useful and reliable technique for the rapid determination of volatile halocarbon compounds in water samples.  相似文献   

2.
Membrane-assisted solvent extraction was applied to the determination of polychlorinated biphenyls (PCBs) in aqueous samples. The apparatus of membrane-assisted solvent extraction consisted of a 20 ml headspace vial which was filled with 15 ml of the aqueous sample. The membrane bag was placed into the vial and the extraction took place in an agitator. After extraction, the analytes were transferred into the inlet of a gas chromatograph by large volume injection. A mass-selective detector was used. The whole procedure was fully automated. The work included optimization of the extraction conditions (stirring rate and extraction time) and the influence of matrix effects like salt addition and the presence of organic solvents was studied. Calibration was performed using injection volumes of 100 and 400 microl. Several parameters like linearity and reproducibility of the procedure were determined. At optimized conditions detection limits in the ng/l range were achieved. The effectiveness of the method towards real samples was tested by analyzing river water, white wine and apple juice.  相似文献   

3.
Soil samples were suspended in a suitable aqueous solvent and a solid phase microextraction (SPME) fibre was used to sample the headspace (HS) for five volatile chlorinated compounds (VOX). Their determination was made by GC-ECD technique in the splitless mode. Preliminary studies on the effects of methanol and of the sand/clay ratio on the fibre extraction were made. Four experimental factors, namely, extraction time, extraction temperature, pH and NaCl%, able to affect distribution of the analytes among the four different phases, were varied in suitable ranges. A multivariate approach applied to the face centred cube (FCC) experimental design, was used to try to optimise the overall sample response. The suitable set of factors found for the determination of chloroform, 1,2-dichloroethane, trichloroethylene, 1,1 ,2-trichloroethane, 1,1,2,2-tetrachloroethane, was a compromise among the relevant optimal factor sets of the single analytes. Detection limits of 0.003 ng, 0.022 ng, 0.001 ng, 0.015 ng and 0.002 ng were found respectively for the five cited analytes. The method was successfully used to determine the analyte contents in two real soils sampled in an industrial area.  相似文献   

4.
A simple device was developed for in-vial liquid-liquid extraction using a polymer membrane (nonporous polypropylene) to separate an aqueous sample from an organic extractant. The membrane consisted of tubing with an internal diameter of 6 mm and a wall thickness of 0.05 mm, which was heat-sealed at the lower end and filled with 500 microl hexane. This membrane bag was incorporated into a conventional 20 ml headspace vial suitable for a multi-purpose sampler (MPS 2, Gerstel, Mülheim, Germany) directly interfaced to a gas chromatograph with a mass-selective detector. The sampler enabled the extraction vial to be mixed at a defined temperature with subsequent large-volume injection of the organic extract taken from the membrane bag. The method was evaluated using several triazines, 2,4-dichloroaniline, alpha-hexachlorocyclohexane and phenanthrene as model compounds. Extraction parameters such as temperature, agitation speed, and extraction time were optimised. Recoveries of 60-90% were achieved after 30 min extraction. By increasing the injection volume to 100 microl, detection limits of 1-10 ng/l were determined.  相似文献   

5.
Eight organophosphorus pesticides (parathion-methyl, fenitrothion, malathion, fenthion, bromophos, bromophos-ethyl, fenamiphos and ethion) in aqueous samples were analysed by means of membrane-assisted solvent extraction. First a 20 ml extraction vial was filled with 15 ml of aqueous sample. Then the membrane bag consisting of nonporous polypropylene was put into the vial and filled with 800 microl of organic solvent. The analytes were separated from the aqueous layer by transporting them through the membrane material into the small amount of solvent. The technique was fully automated and successfully combinable with large volume extraction and GC-MS. To achieve an optimum performance several extraction conditions were investigated. Cyclohexane was chosen as acceptor phase. Then the impact of salt, methanol, pH value, as well as working parameters like stirring rate of the agitator and extraction time, were studied. Moreover, the influence of matrix effects was examined by adding different concentrations of humic acid sodium salt. Detection limits in the ng/l level were achieved using large volume injection with the injecting volume of 100 microl. The recovery values ranged from 47 to 100% and the relative standard deviation for three standard measurements was between 4 and 12% (except for bromophos-ethyl: 22%). The linear dynamic range was between 0.001 and 70 microg/l. The applicability of the method to real samples was tested by spiking the eight organophosphorus pesticides to red wine, white wine and apple juice samples.  相似文献   

6.
A sensitive and solvent-free procedure for the determination of non-steroidal acidic anti-inflammatory drugs in water samples was optimized using solid-phase microextraction (SPME) followed by on-fiber silylation of the acidic compounds and gas chromatography-mass spectrometry (GC-MS) determination. Microextraction was carried out directly over the filtered water samples using a polyacrylate fiber. Derivatization was performed placing the SPME fiber, loaded with the extracted analytes, in the headspace of a vial containing 50 microl of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Derivatives were desorbed for 3 min in the GC injector. Influence of several parameters in the efficiency of microextraction (volume of sample, time, pH, type of fiber coating, etc.) and derivatization steps (time, temperature and volume of MTBSTFA) was systematically investigated. In the optimal conditions an excellent linearity over three orders of magnitude and quantification limits at the ng/l level (from 12 to 40 ng/l) were achieved. The proposed method was applied to the determination of acidic compounds in sewage water and results compared to those obtained using solid-phase extraction (SPE) followed by the derivatization of the compounds in the organic extract of the solid-phase extraction cartridge.  相似文献   

7.
A new analytical method for the determination of halogenated and aromatic volatile organic compounds in groundwater, mineral water, and drinking water at concentrations ranging between 1-10000 ng/L is developed. A new type of headspace sampler that combines static headspace sampling with a trap is used, yielding very low detection limits and good repeatability without carryover effects. An unexpected transformation of 1,1,2,2-tetrachloroethane into trichloroethene is observed and explained.  相似文献   

8.
The pretreatment technique of microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) has been developed and studied for the extraction of semi-volatile organic compounds (SVOCs) in aqueous samples prior to chromatographic analysis. The optimum conditions for obtaining extraction efficiency, such as the extraction time, extraction temperature, addition of salts, and the ratio of sample to headspace volume parameters were investigated. Experimental results indicated that the proposed MA-HS-SPME technique attained the best extraction efficiency under the optimized conditions, i.e., irradiation of extraction solution (20mL aqueous sample in 40mL headspace vial with no addition of salt) under 30W microwave power for 30min at 70 degrees C. The detection was linear at 1-250ng/L with correlation coefficient exceeding 0.997. The detection limits obtained were between 0.2-10.7ng/L, repeatability range from 2 to 15%. Real water samples collected from known sites in southern Taiwan were analyzed using the optimized conditions.  相似文献   

9.
The determination of five volatile organochlorine compounds, VOX (chloroform, 1,1,1-trichloroethane, carbon tetrachloride, trichloroethene and tetrachloroethene) in raw landfill leachates and biologically cleansed leachates by GC-MS is investigated. Two extraction and preconcentration procedures were evaluated for recovery of such analies from the samples, including static headspace (HS) and solid phase microextraction by sampling the headspace above the sample (HS-SPME). Optimisation of operating parameters for the best performance of both, sampling and preconcentration techniques was described. Detection limits, time of analysis, precision and linear ranges of both introduction techniques have been established. Application of proposed methods to the determination of the five VOX under study in the above referred samples revealed the absence of such analytes in both leachates. Then both methods were applied to the determination to the five organochlorine compounds under study on spiked leachates samples. While HS-GC-MS offered better analytical precision than HS-SPME-GC-MS, this last technique gave a faster analytical response because no dilution must be done for a reliable VOX determination in landfill leachates. In any case, both sample introduction techniques tested provides excellent recoveries and good analytical precision (ranged from 1 to 3%).  相似文献   

10.
Zhang M  Huang J  Wei C  Yu B  Yang X  Chen X 《Talanta》2008,74(4):599-604
A new approach for the extraction of nine kinds of organochlorine pesticides (OCPs) from vegetable samples coupling single-drop microextraction with gas chromatography-mass spectrometry was presented. Experimental parameters, such as organic solvent, exposure time, agitation and organic drop volume were controlled and optimized. An effective extraction was achieved by suspending a 1.00microL mixed drop of p-xylene and acetone (8:2, v/v) to the tip of a microsyringe immersed in a 2mL donor aqueous solution and stirred at 400rpm. The approach was applied to the determination of OCPs in vegetable samples with a linearity range of 0.05-20ng mL(-1) for alpha-, beta-, gamma-, delta-hexachlorobenzene (BHC) and dicofol, 0.5-20ng mL(-1) for dieldrin and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (DDD) or 0.5-50ng mL(-1) for 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) and 2-(2-chlorophenyl)-2 (4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT). Correspondingly, the determination limit at an S/N of 3 ranged from 0.05ng mL(-1) for alpha-, beta-, gamma-, delta-BHC to 0.2ng mL(-1) for dicofol, dieldrin or p,p'-DDT. The relative recoveries were from 63.3 to 100%, with repeatability ranging from 8.74 to 18.9% (relative standard deviation, R.S.D.). The single-drop microextraction was proved to be a fast and simple approach for the pre-concentration of organochlorine pesticides in vegetable samples.  相似文献   

11.
In this study, we present a simple and easy-to-use extraction method that is based on a hollow-fiber microporous membrane liquid-liquid extraction (HF-MMLLE), as an extraction technique, followed by gas chromatography-mass spectrometry (GC-MS) to determine a group of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), at trace levels in aqueous samples. The hollow-fiber membrane (HF) filled with organic solvent was immersed into the aqueous sample, spiked with the analytes at ng l(-1) level, and stirred for 60 min. The proposed method could attain enrichment factors (E(e)) up to 5200 times, after optimising parameters, such as organic solvent, stirring speed and extraction time, that affect the extraction. The HF-MMLLE-GC-MS method was successfully applied to the extraction of PBDEs from tap, river and leachate water samples with spike recoveries ranging from 85% to 110%. The method validation with reagent and leachate water samples provided good linearity, detection limits of 1.1 ng l(-1) or lower, both in reagent and leachate water, as well as satisfactory precision in terms of repeatability and reproducibility with values of % relative standard deviation (%RSD) lower than 8.6 and 16.9, respectively.  相似文献   

12.
A solvent-free method for the determination of five estrogens in water samples at the low ng/l was optimized. Compounds were first concentrated on a polyacrylate (PA) solid-phase microextraction (SPME) fiber, directly exposed to the water sample, and then on-fiber silylated on the headspace of a vial containing 50 microl of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA). Derivatized analytes were determined using GC with MS/MS detection. Influence of several factors on the efficiency of the microextraction step (e.g. time, sample volume, pH, ionic strength and fiber coating) is systematically described. Derivatization conditions were optimized in order to achieve the complete silylation of all hydroxyl groups contained in the structure of the compounds. Detection limits (from 0.2 to 3 ng/l) are compared with those obtained using the same detection technique and different sample preparation strategies, such as solid-phase extraction followed by silylation of the analytes in the organic extract and SPME without derivatization. The method was applied to the analysis of sewage water samples. Two of the investigated species were detected above the quantification limits of the procedure.  相似文献   

13.
The analysis of organic pollutants in drinking water is a topic of wide interest, reflecting on public health and life quality. Many different methodologies have been developed and are currently employed in this context, but they often require a time-consuming sample pre-treatment. This step affects the recovery of the highly volatile compounds. Trace analysis of volatile organic pollutants in water can be performed 'on-line' by membrane inlet mass spectrometry (MIMS). In MIMS, the sample is separated from the vacuum of the mass spectrometer by a thin polymeric hollow-fibre membrane. Gases and organic volatile compounds diffuse and concentrate from the sample into the hollow-fibre membrane, and from there into the mass spectrometer. The main advantages of the technique are that no pre-treatment of samples before analysis is needed and that it has fast response times and on-line monitoring capabilities. This paper reports the set-up of the analytical conditions for the analysis of volatile organohalogen compounds (chloroform, bromoform, bromodichloromethane, chlorodibromomethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). Linearity of response, repeatability, detection limits, and spectra quality are evaluated.  相似文献   

14.
The analysis of volatile halocarbons (VHCs) in air or ground air is often performed after their adsorption and enrichment on activated carbon. The current procedure for their subsequent determination is based on their extraction from the activated carbon with a volatile organic solvent such as n-pentane, followed by gaschromatographic (GC) analysis. In order to avoid extraction steps, the static headspace method in combination with GC analysis using diphenylmethane as a desorption agent has been applied. Satisfactory desorption rates for the chloromethanes, for 1,1,1-trichloroethane, trichloroethene and for tetrachloroethene have been obtained after a sample equilibration of 45 min at 120° C in the presence of diphenylmethane. The results have shown a higher recovering rate especially of the unsaturated VHCs compared to the extraction with n-pentane, whereby a potential loss of analytes by the latter procedure has been avoided.  相似文献   

15.
The analysis of volatile halocarbons (VHCs) in air or ground air is often performed after their adsorption and enrichment on activated carbon. The current procedure for their subsequent determination is based on their extraction from the activated carbon with a volatile organic solvent such as n-pentane, followed by gaschromatographic (GC) analysis. In order to avoid extraction steps, the static headspace method in combination with GC analysis using diphenylmethane as a desorption agent has been applied. Satisfactory desorption rates for the chloromethanes, for 1,1,1-trichloroethane, trichloroethene and for tetrachloroethene have been obtained after a sample equilibration of 45 min at 120 degrees C in the presence of diphenylmethane. The results have shown a higher recovering rate especially of the unsaturated VHCs compared to the extraction with n-pentane, whereby a potential loss of analytes by the latter procedure has been avoided.  相似文献   

16.
A new method for the simultaneous determination of 12 volatile organic compounds (trans-1,2-dichloroethene, 1,1,1-trichloroethane, benzene, 1,2-dichloroethane, trichloroethene, toluene, 1,1,2-trichloroethane, tetrachloroethene, ethylbenzene, m-, p-, o-xylene) in water samples by headspace solid phase microextraction (HS–SPME)–gas chromatography mass spectrometry (GC–MS) was described, using a 100?µm PDMS (polydimethylsiloxane) coated fibre. The response surface methodology was used to optimise the effect of the extraction time and temperature, as well as the influence of the salt addition in the extraction process. Optimal conditions were extraction time and temperature of 30?min and ?20°C, respectively, and NaCl concentration of 4?mol?L?1. The detection limits were in the range of 1.1?×?10?3–2.3?µg?L?1 for the 12 volatile organic compounds (VOCs). Global uncertainties were in the range of 4–68%, when concentrations decrease from 250?µg?L?1 down to the limits of quantification. The method proved adequate to detect VOCs in six river samples.  相似文献   

17.
Exposing a microlitre organic solvent drop to the headspace of an aqueous sample contaminated with ten chlorobenzene compounds proved to be an excellent preconcentration method for headspace analysis by gas chromatography-mass spectrometry (GC-MS). The proposed headspace single-drop microextraction (SDME) method was initially optimised and the optimum experimental conditions found were: 2.5 microl toluene microdrop exposed for 5 min to the headspace of a 10 ml aqueous sample containing 30% (w/v) NaCl placed in 15 ml vial and stirred at 1000 rpm. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9901 and 0.9971, except for hexachlorobenzene where the correlation coefficient was found to be 0.9886. The repeatability of the proposed method, expressed as relative standard deviation varied between 2.1 and 13.2% (n = 5). The limits of detection ranged between 0.003 and 0.031 microg/l using GC-MS with selective ion monitoring. Analysis of spiked tap and well water samples revealed that matrix had little effect on extraction. A comparative study was performed between the proposed method, headspace solid-phase microextraction (SPME), solid-phase extraction (SPE) and EPA method 8121. Overall, headspace SDME proved to be a rapid, simple and sensitive technique for the analysis of chlorobenzenes in water samples, representing an excellent alternative to traditional and other, recently introduced, methods.  相似文献   

18.
In this paper, a novel method for the determination of chloroform in drinking water has been described. It is based on liquid-phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS). Extraction conditions such as solvent selection, organic solvent dropsize, stirring rate, content of NaCl and extraction time were found to have significant influence on extraction efficiency. The optimized conditions were 1.5 microl xylene, 20 min extraction time at 400 rpm stirring rate without NaCl addition. The linear range was 1.0 - 100 microg l(-1) for chloroform. The limit of detection (LOD) was 1.0 microg l(-1); and relative standard deviation (RSD) at the 30 microg l(-1) level was 2.9%. Tap water samples from a laboratory were successfully analyzed using the proposed method. The relative recovery of spiked water samples was 104%.  相似文献   

19.
A novel and simple device for membrane-assisted liquid-phase microextraction is used for the first time in a three-phase system. The device consists of a glass vial containing the aqueous acceptor phase, whose septum of its screw stopper has been replaced by a sized piece of polytetrafluoroethylene membrane impregnated with n-decane. The vial is assembled to a volumetric flask containing the aqueous donor phase, and the membrane comes in contact alternatively with both donor and acceptor aqueous phases by orbital agitation. The device has been tested for the determination of nitrite in tap water samples, which is extensively carried out in routine analysis, as model analytical application. Experimental variables, such as the organic solvent used to form the supported liquid membrane, the volumes of both donor and acceptor phases, the orbital agitation rate, and the extraction time were studied and optimized in terms of enrichment factor. Under the selected working conditions, the analytical figures of merit for nitrite determination were a linearity range up to 50 ng mL−1, limits of detection and quantification of 0.15 and 0.50 ng mL−1, respectively, and a good repeatability (RSD < 10%). The method has been applied to four tap water samples of different origins, and accurate and precise results were achieved. Besides, the very low volume of organic solvent used, its low cost and the no-risk of cross-contamination are significant operational advantages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号