首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterostructured magnetic nanotubes   总被引:1,自引:0,他引:1  
Heterostructured magnetic tubes with submicrometer dimensions were assembled by the layer-by-layer deposition of polyelectrolytes and nanoparticles in the pores of track-etched polycarbonate membranes. Multilayers composed of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at high pH (pH > 9.0) were first assembled into the pores of track-etched polycarbonate membranes, and then multilayers of magnetite (Fe3O4) nanoparticles and PAH were deposited. Transmission electron microscopy (TEM) confirmed the formation of multilayer nanotubes with an inner shell of magnetite nanoparticles. These tubes exhibited superparamagnetic characteristics at room temperature (300 K) as determined by a SQUID magnetometer. The surface of the magnetic nanotubes could be further functionalized by adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block copolymers. The separation and release behavior of low molecular weight anionic molecules (i.e., ibuprofen, rose bengal, and acid red 8) by/from the multilayer nanotubes were studied because these tubes could potentially be used as separation or targeted delivery vehicles. The magnetic tubes could be successfully used to separate (or remove) a high concentration of dye molecules (i.e., rose bengal) from solution by activating the nanotubes in acidic solution. The release of the anionic molecules in physiologically relevant buffer solution showed that whereas bulky molecules (e.g., rose bengal) release slowly, small molecules (i.e., ibuprofen) release rapidly from the multilayers. The combination of the template method and layer-by-layer deposition of polyelectrolytes and nanoparticles provides a versatile means to create functional nanotubes with heterostructures that can be used for separation as well as targeted delivery.  相似文献   

2.
Gold nanotubule membranes were prepared by using electroless deposition of gold within the pores and surfaces of polycarbonate track-etched membranes.And the gold nanotubule membrane was used as an electrode for determination of uric acid in urine samples for the first time.In Britton-Robinson buffer of pH 4.56,uric acid exhibited well-defined differential pulse voltammograms.And the interference between coexistent ascorbic acid and uric acid was overcome owing to the attractive ability of the gold nanotubule electrode to yield a large anodic peak difference ca.0.404 V(vs.SCE).The proposed method was then applied to the determination of uric acid in urine without any pretreatment.  相似文献   

3.
A new method for surface-initiated atom transfer radical polymerization (ATRP) on the technical polymer poly(ethylene terephthalate) (PET) has been developed which allows controlling and estimating the layer thickness of the grafted polymer in the isocylindrical pores of track-etched membranes. After PET surface treatment by oxidative hydrolysis, the bromoalkyl initiator was immobilized on the PET surface in a two-step solid-phase reaction; the isoporous membrane structure was preserved, and the pore diameter was increased from 760 to 790 nm. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted under ATRP conditions from a methanol/water mixture at room temperature. Both monomer concentration and reaction time could be used as parameters to adjust the degree of grafting. Effective grafted layer thickness and its response to temperature were estimated from pure water permeability. All data, especially the high polymer densities (0.37 g/cm3) in the swollen layers at 25 degrees C, indicate that grafted PNIPAAm with a "brush" structure has been achieved. For dry PNIPAAm layer thicknesses on the PET pore walls of up to 80 nm, a temperature-induced swelling/deswelling ratio of approximately 3 had been observed. Reduction of the brush grafting density, via composition of the reaction mixture used in solid-phase synthesis for initiator immobilization, led to an increase of that swelling/deswelling ratio. Further, density and temperature response of the grafted PNIPAAm layers synthesized via ATRP were compared with those obtained in the same membranes by less controlled photografting, leading to lower grafting density and larger gradients in grafted layer density and, consequently, much higher swelling/deswelling ratios (>15).  相似文献   

4.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

5.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

6.
Alternating adsorption of multivalent ions and oppositely charged polyelectrolytes on colloid particles has been investigated. Multilayer films composed of Tb3+/polysterene sulfonate (PSS) and 4-pyrene sulfate/polyallylamine (PAH) were successfully assembled on polysterene sulfonate (PS) and melamine formaldehyde (MF) latex particles. The amount of assembled material was estimated by fluorescence and the linear growth of the film versus the number of layers was demonstrated. These multilayers are not stable and can be decomposed by salt and temperature. Dissolution of MF particles leads to formation of hollow capsules consisting of multivalent ion/polyelectrolyte multilayers. Comparative analysis of the capsules was done by confocal and scanning force microscopy. Complex hollow spheres consisting of Tb3+/PSS or 4-PS/PAH as an inner shell and stable PSS/PAH as an outer shell were produced. Due to selective permeability of the outer shell after degradation of the inner shell the multivalent ions are released out of the capsule while the polyelectrolytes fill the capsule interior. This is indicative of swelling of the capsule by osmotic pressure. The filled capsules were studied by confocal and scanning electron microscopy. Possibilities of encapsulating macromolecules in defined amounts per capsule are discussed.  相似文献   

7.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

8.
Summary: Carboxylated multiwalled carbon nanotubes (MWNTs) were assembled with poly(allylamine hydrochloride) (PAH) onto decomposable colloidal particles, to subsequently yield hollow microcapsules after core removal. A sandwich structure with MWNTs layer embedded in poly(styrenesulfonate sodium salt) (PSS)/PAH multilayers was designed and constructed on melamine formaldehyde particles. Transmission electron microscopy and confocal microscopy revealed the hollow structure and good dispersity of the resultant microcapsules. The MWNTs were uniformly distributed on the capsule walls.

TEM images of (PSS/PAH)5/MWNT/(PAH/PSS)2 microcapsules templated on MF microparticles, after core decomposition (main). They still preserve their continuous and intact structure with no signs of rupture. Inset: magnified surface.  相似文献   


9.
Atomic force microscopy (AFM) is employed to obtain information on the main stages of the preparation of ultrafiltration track-etched membranes based on poly(ethylene terephthalate) (PET). The surface structure of initial commercial samples of PET films and the same films irradiated with various fluxes of accelerated heavy ions and subsequently treated with alkaline that results in the formation of pores owing to track etching is studied. It is shown that the order of the aforementioned stages of the formation of track-etched membranes with various porosities (from 0.02 to 6%) at a typical pore size of about 50 nm leads only to slight changes in surface structural parameters and does not fundamentally affect the polymer structure formed by spherulites with sizes that are comparable with the pore sizes. In this case, nearly the same content of the crystalline phase in the initial film and track-etched membrane are identified by large-angle X-ray scattering. The picture of X-ray scattering by track-etched membranes at small angles fully corresponds to the scattering on cylindrical pores with a diameter of about 50 nm. The analysis of the set of roughness profiles of the surfaces of initial films and track-etched membranes obtained by the AFM technique makes it possible to determine and introduce—in addition to standard parameters of the surface, the mean value of roughness and its standard deviation the correlation length characterizing the mean distance at which the memory of the roughness value is lost. It is shown that treatments resulting in the formation of track-etched membranes favor an increase in the values of roughness and practically do not affect the mean correlation length, thus supporting the conclusion of the invariance of the main structural parameters of the PET surface.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 248–258.Original Russian Text Copyright © 2005 by Solovieva, Timofeeva, Erina, Vstovsky, Krivandin, Shatalova, Apel, Mchedlishvili, Timashev.  相似文献   

10.
11.
A self-assembly approach to the preparation of nanocomposite siliceous thin films by using oligosilsesquioxanes as building blocks is presented. Poly(styrene-4-sulfonate), PSS, and octa(3-aminopropyl)silsesquioxane, NSi8, were layer-by-layer (LbL) assembled onto planar substrates and polystyrene (PS) particles, thus forming composite multilayers. We have clarified the binding properties of NSi8 to PSS by examining the pH influence on film buildup by microelectrophoresis (zeta-potential) and quartz crystal microgravimetry (QCM). The regular growth of PSS/NSi8 multilayers on planar supports was confirmed by surface plasmon resonance (SPR) spectroscopy and QCM. By applying the LbL coating procedure to spherical templates, we prepared compact, microporous hollow silica spheres by calcining PS spheres coated with (poly(allylamine hydrochloride) (PAH)/PSS)(2)/(NSi8/PSS)(n) (n varying from 3 to 12), at 750 degrees C, because of sintering of the octameric clusters (NSi8). Hollow spheres derived from coatings with n = 3 drastically altered in size (relative to the template core), depending on the size of the PS particles used. The novelty of this method for the nanofabrication of siliceous films stems from the use of well-defined and discrete building blocks, such as NSi8, leading to homogeneous organic-silica composite films as well as individual siliceous particles of variable size and shape.  相似文献   

12.
The quartz crystal microbalance with dissipation technique (QCM‐D) and atomic force microscopy (AFM) have been employed to study the interaction of N‐tetradecyl trimethyl ammonium bromide (TdTmAB) with polyelectrolyte multilayers containing poly(sodium 4‐styrene sulfonate) (PSS) as the polyanion and either poly(allylamine hydrochloride) (PAH) or poly(diallyl dimethyl ammonium chloride) (PDADMAC) as the polycations. The multilayers were exposed to aqueous solutions of TdTmAB. This resulted in a selective removal of PDADMAC PSS layers while layers with PAH as polycation remained stable. It is suggested that PDADMAC/PSS multilayers can be employed as strippable protecting layers.

  相似文献   


13.
Self-supported particle-track-etched polycarbonate membranes with nearly perfect cylindrical pores are used for the preparation of similarly perfect cylindrical polypyrrole nanowires and nanotubes. A complete investigation of the structural properties that result at different stages of the preparation route of polypyrrole nanowires and nanotubes is based on a combination of real and reciprocal space techniques. Nanoporous membranes with nominal pore size ranging from 5 to 150 nm and pore density up to 10(9) pores/cm(2) made from 21-microm-thick polycarbonate films are used. Polypyrrole nanotubes or nanowires are synthesized inside the pores. A real-space picture of the nanomaterial results from scanning force microscopy (SFM) on ultrathin sections made in two directions to obtain structures in the sample surface as well as perpendicular to the surface. From a model-based fit to the small-angle and ultra-small-angle X-ray scattering (SAXS/USAXS) data, the geometric pore structure is obtained and compared to values determined with scanning electron microscopy (SEM). Nanopores, nanowires, and nanotubes are described by uniform solid cylinders or hollow tubes, which are oriented highly parallel to each other and exhibit a small size distribution. Below a critical pore diameter, solid nanowires are produced whereas above this limit hollow nanotubes result.  相似文献   

14.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

15.
An extended bubble point method has been used to examine the porous morphology of several track-etched microporous polycarbonate membranes with nominal pore sizes ranging from 0.1 to 5.0 μm. The technique has been carefully analyzed and corrected to take into account the diverse non-ideal factors in flow along with the prevalence of Knudsen flow over the Hagen-Poiseuille one in the smaller pores.  相似文献   

16.
Layer-by-layer deposition of anionic and cationic polyelectrolytes readily converts polymeric ultrafiltration membranes into materials capable of nanofiltration. ATR-FTIR spectra confirm that layer-by-layer deposition occurs on the ultrafiltration substrates, and adsorption of as few as 2.5 bilayers of poly(styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) or 3.5 bilayers of PSS/poly(diallyldimethylammonium chloride) (PDADMAC) reduces the molecular weight cutoff of polyethersulfone ultrafiltration supports from 50 kDa to <500 Da. Deposition of multilayer polyelectrolyte films on 300 and 500 kDa membranes also decreases molecular weight cutoffs, but solute rejections are significantly lower when using these supports, suggesting that the polyelectrolyte films do not completely cover large (0.2-0.4 microm in diameter) pores. On the 50 kDa substrates, PSS/PDADMAC films containing 3.5 bilayers exhibit a 95% rejection of SO(4)(2-) and a chloride/sulfate selectivity of 27, whereas 4.5-bilayer PSS/PAH coatings show a glucose/raffinose selectivity of 100. Pure water flux for [PSS/PAH](3)PSS-coated membranes at 4.8 bar is 1.6 m(3)/(m(2)day), which is more than 2-fold higher than that through a commercial 500 Da membrane.  相似文献   

17.
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n~1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view.  相似文献   

18.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

19.
Pore size distributions and pore densities of track-etched polycarbonate ultrafiltration (UF) membranes with pore sizes ranging from 10 to 100 nm (0.01–0.10 μm) were characterized by image analysis of field emission scanning electron micrographs (FESEM) of membranes. Porosity data obtained from image analysis compared well with those derived from manufacturer's specifications, but this may have been coincidental, as pore size and pore density results differed by 20–40% and 25–70%, respectively. The experimentally determined flux through each membrane type varied by up to 30–45% within a batch, and were about 8–46 times higher than the theoretical over the range of membranes. The disparity between theoretical and experimental flux was beyond the bounds of physical variability of the membranes. The membranes with smaller pore size tended to show a greater disparity. Water flux of all membranes increased with increasing temperature, generally in accord with the decreasing viscosity of water. However, unlike the linear increase for the membranes with larger pores (> 50 nm), the membranes with smaller pores (10 and 30 nm) showed exponential increase with temperature. Water flux also increased with a pressure increase from 50 to 300 kPa. Raised pressure appear to enlarge pores resulting in exponential flux enhancement at higher pressure, particularly for membranes with smaller pores (PC10). The pores may have stretched open under pressure to deliver the higher than expected fluxes due to flexibility of polycarbonate films, although FESEM showed no visible evidence of fracturing or tearing of the membranes. The flux results from filtration of aqueous protein solution were a little lower and correlated well with water permeability of the membranes, but remained in discord with the pore size distribution results.  相似文献   

20.
This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H(2)O and D(2)O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号