首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transverse electron spin magnetization of a paramagnetic center with effective spinS=1/2 interacting with nonquadrupolar nuclei may be presented as a function of pairs of nuclei magnetization vectors which precess around the effective magnetic field directions. Each vector of the pair starts its precession perpendicular to both effective fields. The free induction decay (FID) signal is proportional to the scalar product of the vectors for nuclear spinI=1/2. The electron spin echo (ESE) signal can be described with two pairs of magnetization vectors. The ESE shape is not equal to two back-to-back FID signals except in the absence of ESE envelope modulation. A recursion relation is obtained which allows calculation of ESE signals for larger nuclear spins in the absence of nuclear quadrupole interaction. This relation can be used to calculate the time course of the ESE signal for arbitrary nuclear spins as a function of the nuclear magnetization vectors. While this formalism allows quantitative calculation of modulation from nuclei, it also provides a qualitative means of visualizing the modulation based on simple magnetization vectors.  相似文献   

2.
Conditions for the generation of electromagnetic radiation by spin-polarized electron transport through a junction made on the basis of an InSb semiconductor and an HgCr2Se4 or Co2MnSb ferromagnetic material are investigated. It is shown that electromagnetic radiation from the junction appears only when the electron flow passing from the ferromagnet to the InSb semiconductor is polarized. The radiation intensity is found to depend on the direction of the external magnetic field with respect to the InSb crystal axes. Maximum intensity values are observed for the field directions corresponding to the highest probability of electric dipole spin transitions between Zeeman levels.  相似文献   

3.
We demonstrate an alternative nuclear spin resonance using a radio frequency (rf) electric field [nuclear electric resonance (NER)] instead of a magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The rf electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The rf power and burst duration dependence of the NER spectrum provides insight into the interplay between nuclear spins and the oscillating domain walls.  相似文献   

4.
We derive a theory of Knight shift (K) in solids including the effects of periodic potential, spin-orbit interaction, magnetic hyperfine interactions and indirect nuclear hyperfine interaction. We use a temperature dependent Green's function technique to evaluate the thermodynamic potential which is then used to obtain a general expresion for the Knight shift. Our formula for K is expressed as a sum of contributions due to conduction electrons and localized electrons of either d- or f-type: Kcond and Kloc. While Kcond is the same as our previous expression for K derived in the absence of localized magnetic moments, Kloc is a new contribution and is due to the hybridization of conduction and localized electron magnetic moments. We also briefly discuss the many-body effects on the different contributions to K. Finally, the importance of the present theory in possible applications to metals, alloys and compounds containing transition and rare-earth elements, and magnetic semiconductors is discussed.  相似文献   

5.
A mechanism of glass-like behaviour in solid paramagnets is suggested, based on exponential slowing down the spin relaxation via upper energy levels caused by crystalline or hyperfine splitting of the ground state of a paramagnetic ion. Some recent experimental data can be described by this model.  相似文献   

6.
We identify fundamental mechanisms of electron and hole dynamics in self-organized InAs/GaAs quantum dots (QDs) subject to vertical electric fields by photocurrent investigations. We propose a spin–flip mechanism involving a spin exchange between neighboring QDs. The spin–flip process is revealed in the photocurrent dynamics when the exciton population increases unexpectedly with reverse bias.  相似文献   

7.
We find a new correction to hyperfine splitting in the ground state of hydrogen atom in magnetic field. The physical basis for this effect is the reduction of the size of the electron orbit in magnetic field. As a result, the value of the wavefunction at the origin increases which can be called magnetic focusing. Another magnetic-field-induced effect is the appearance of field dependent tensor forces.  相似文献   

8.
Additional spin-ocho signale from quadrupole nuclei with I=7/2 (Co59 nuclei in Co and Fe−Co thin films) were investigated. It has been shown, that the time dependence of the additional ocho signals, arising at the time moments 2nς reflect quadrupole interaction inhomogenety.  相似文献   

9.
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.  相似文献   

10.
Nanostructures of diluted magnetic semiconductors were fabricated to study novel magneto-optical properties that are derived from quantum confined band electrons interacting with magnetic ions. Quantum dots (QDs) of Cd0.97Mn0.03Se were grown by the self-organization on a ZnSe substrate layer. QDs of Zn0.69Cd0.23Mn0.08Se and quantum wires (QWRs) of Cd0.92Mn0.08Se and Zn0.69Cd0.23Mn0.08Se were fabricated by the electron beam lithography. A single quantum well (QW) of ZnTe/Zn0.97Mn0.03Te and double QWs of Cd0.95Mn0.05Te–CdTe were grown by molecular beam epitaxy. Magneto-optical properties and the formation and relaxation dynamics of excitons were investigated by ultrafast time-resolved photoluminescence (PL) spectroscopy. Excitons in these nanostructures were affected by the low-dimensional confinement effects and the interaction with magnetic ion spins. The exciton luminescence of the Cd0.97Mn0.03Se QDs shows the confined exciton energy due to the dot size of 4–6 nm and also shows marked increase of the exciton lifetime with increasing the magnetic field. The QDs of Zn0.69Cd0.23Mn0.08Se fabricated by the electron beam lithography display narrow exciton PL spectrum due to the uniform shape of the dots. The exciton luminescence from the QWRs of Cd0.92Mn0.08Se and Zn0.69Cd0.23Mn0.08Se shows the influence of the one-dimensional confinement effect for the exciton energy and the luminescence is linearly polarized parallel to the wire direction. The transient PL from the ZnTe/Zn0.97Mn0.03Te QWs displays, by the magnetic field, the level crossing of the exciton spin states of the nonmagnetic and magnetic layers and the spatial spin separation for the excitons. Cd0.95Mn0.05Te–CdTe double QWs show the injection of the spin polarized excitons from the magnetic well to the nonmagnetic QW.  相似文献   

11.
We present several micromagnetic simulation examples of magnetization dynamics driven by the spin injection. First, we address the validity of the macrospin approximation often used to interpret experimental data. Next, we discuss the interpretation of experimental results obtained on columnar multilayer structures and show that a sophisticated micromagnetic model which takes into account a polycrystalline structure of a nanoelement can explain qualitatively the most important features of the magnetization oscillation spectra observed experimentally. A quantitative agreement with experimental results, however, could not be achieved in the region of reasonable parameter values. The third part of our contribution deals with simulations of the point-contact experiments. Here, we find an important qualitative disagreement between the experiment and simulations. The latter predict the existence of two current regions of a steady-state precession of the point-contact area (before and after spin-polarized current-driven magnetization switching), whereas experimentally only one such region is observed. In conclusion, we discuss some explanations of the above-mentioned discrepancies.  相似文献   

12.
New method for the detection of magnetic resonance signals versus temperature is developed on the basis of the temperature dependence of the spin Hamiltonian parameters of the paramagnetic system under investigation. The implementation of this technique is demonstrated on the nitrogen-vacancy (NV) centers in diamonds. Single NV defects and their ensembles are suggested to be almost inertialess temperature sensors. The hyperfine structure of the 14N nitrogen nuclei of the nitrogen-vacancy center appears to be resolved in the hyperfine structure characteristic of the hyperfine interaction between NV and an N s center (substitutional nitrogen impurity) in the optically detected magnetic resonance spectra of the molecular NV-N s complex. Thus, we show that a direct evidence of the two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N s pairs was observed. It is shown that more than 3-fold enhancement of the NV optically detected magnetic resonance signal can be achieved by using water as a collection optics medium.  相似文献   

13.
We present our extensive research into magnetic anisotropy. We tuned the terrace width of Si(111) substrate by a novel method: varying the direction of heating current and consequently manipulating the magnetic anisotropy of magnetic structures on the stepped substrate by decorating its atomic steps. Laser-induced ultrafast demagnetization of a Co Fe B/Mg O/Co Fe B magnetic tunneling junction was explored by the time-resolved magneto-optical Kerr effect(TRMOKE) for both the parallel state(P state) and the antiparallel state(AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two Co Fe B layers via the tunneling of hot electrons through the Mg O barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electron tunneling current. This opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions. Furthermore, an all-optical TR-MOKE technique provides the flexibility for exploring the nonlinear magnetization dynamics in ferromagnetic materials, especially with metallic materials.  相似文献   

14.
The analytical expressions for the spectral density of the dead time free electron spin echo envelope modulation (ESEEM) signal of disordered system are obtained for a paramagnetic center with nuclear spin 1/2 and weak axially symmetric hyperfine interaction. The spectral density is given by the Fourier transformation of the ESE signal averaged over all orientations. The order of the two linear operations may be changed. Fourier transformation of the nonaveraged ESE signal supplies us with the sum of the Dirac δ -functions. Averaging of such a spectrum is a rather trivial operation leading to the spectral densities in the final form.  相似文献   

15.
16.
The shaping of nuclear spin polarization profiles and the induction of nuclear resonances are demonstrated within a parabolic quantum well using an externally applied gate voltage. Voltage control of the electron and hole wave functions results in nanometer-scale sheets of polarized nuclei positioned along the growth direction of the well. Applying rf voltages across the gates induces resonant spin transitions of selected isotopes. This depolarizing effect depends strongly on the separation of electrons and holes, suggesting that a highly localized mechanism accounts for the observed behavior.  相似文献   

17.
We demonstrate coherent control of two nuclear spins mediated by the magnetic resonance of a hyperfine-coupled electron spin. This control is used to create a double-nuclear coherence in one of the two electron spin manifolds, starting from an initial thermal state, in direct analogy to the creation of an entangled (Bell) state from an initially pure unentangled state. We identify challenges and potential solutions to obtaining experimental gate fidelities useful for quantum information processing in this type of system.  相似文献   

18.
刘竹琴 《大学物理》2012,31(6):37-40
利用射频段电子自旋共振实验仪,采用恒定磁场正、反向时共振信号等间距及共振条件,精确地测量了延安地区的地磁场强度及磁倾角.  相似文献   

19.
Exact analytic expressions for the modulation effects in two- and three-pulse electron spin echoes resulting from the hyperfine interaction of an electron and a nucleus with an arbitrary spin are derived. The two-pulse envelope modulation is calculated numerically for some nuclei for which modulation effects are most often observed experimentally. Applicability requirements of the conventional approximate formula for analysis of the ESE modulation effects are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号