首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
This paper investigates the topological properties of the Brazilian stock market networks. We build the minimum spanning tree, which is based on the concept of ultrametricity, using the correlation matrix for a variety of stocks of different sectors. Our results suggest that stocks tend to cluster by sector. We employ a dynamic approach using complex network measures and find that the relative importance of different sectors within the network varies. The financial, energy and material sectors are the most important within the network.  相似文献   

2.
The risks and returns of stock investment are discussed via numerically simulating the mean escape time and the probability density function of stock price returns in the modified Heston model with time delay. Through analyzing the effects of delay time and initial position on the risks and returns of stock investment, the results indicate that: (i) There is an optimal delay time matching minimal risks of stock investment, maximal average stock price returns and strongest stability of stock price returns for strong elasticity of demand of stocks (EDS), but the opposite results for weak EDS; (ii) The increment of initial position recedes the risks of stock investment, strengthens the average stock price returns and enhances stability of stock price returns. Finally, the probability density function of stock price returns and the probability density function of volatility and the correlation function of stock price returns are compared with other literatures. In addition, good agreements are found between them.  相似文献   

3.
In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Mar?enko–Pastur distribution.  相似文献   

4.
The main aim of this work is to incorporate selected findings from behavioural finance into a Heterogeneous Agent Model using the Brock and Hommes (1998) [34] framework. Behavioural patterns are injected into an asset pricing framework through the so-called ‘Break Point Date’, which allows us to examine their direct impact. In particular, we analyse the dynamics of the model around the behavioural break. Price behaviour of 30 Dow Jones Industrial Average constituents covering five particularly turbulent US stock market periods reveals interesting patterns in this aspect. To replicate it, we apply numerical analysis using the Heterogeneous Agent Model extended with the selected findings from behavioural finance: herding, overconfidence, and market sentiment. We show that these behavioural breaks can be well modelled via the Heterogeneous Agent Model framework and they extend the original model considerably. Various modifications lead to significantly different results and model with behavioural breaks is also able to partially replicate price behaviour found in the data during turbulent stock market periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号