首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The graphene and phosphorene nanostructures have a big potential application in a large area of today's research in physics. However, their methods of synthesis still don't allow the production of perfect materials with an intact molecular structure. In this paper, the occurrence of atomic vacancies was considered in the edge structure of the zigzag phosphorene and graphene nanoribbons. For different concentrations of these edge vacancies, their influence on the metallic properties was investigated. The calculations were performed for different sizes of the unit cell. Furthermore, for a smaller size, the influence of a uniform magnetic field was added.  相似文献   

2.
《Physics letters. A》2019,383(35):125993
We study the electronic and transport properties of monolayer/bilayer/bilayer (ML/BL/BL) and monolayer/bilayer/monolayer (ML/BL/ML) zigzag-edge phosphorene nanoribbon (ZPNR) junctions modulated by a perpendicular electric field (PEF). Within the tight-binding model Hamiltonian and by adopting the nonequilibrium Green's function, it is demonstrated that some oscillating conductance plateaus appear for the junctions, and the conductances are suppressed by the applied PEF. Interestingly, the direction of the PEF has different influence on the conductance of both junctions. We further present separately the band structures of the left lead, the central region and right lead, to reveal the reason for different conductance behavior in detail. Our results show that the ML/BL/BL ZPNR junction may be more suitable for the usage of field effect transistor than the ML/BL/ML ZPNR one under a PEF. Moreover, a PEF can be applied to distinguish the bottom−bottom and bottom−up configurations for the ML/BL/ML ZPNR junction.  相似文献   

3.
We have investigated gapless edge states in zigzag-edge graphene nanoribbons under a transverse electric field across the opposite edges by using a tight-binding model and the density functional theory calculations. The tight-binding model predicted that a quantum valley Hall effect occurs at the vacuum-nanoribbon interface under a transverse electric field and, in the presence of edge potentials with opposite signs on opposite edges, an additional quantum valley Hall effect occurs under a much lower field. Dangling bonds inevitable at the edges of real nanoribbons, functional groups terminating the edge dangling bonds, and spin polarizations at the edges result in the edge potentials. The density functional theory calculations confirmed that asymmetric edge terminations, such as one having hydrogen at an edge and fluorine at the other edge, lead to the quantum valley Hall effect even in the absence of a transverse electric field. The electric field-induced half-metallicity in the antiferromagnetic phase, which has been intensively investigated in the last decade, was revealed to originate from a half-metallic quantum valley Hall effect.  相似文献   

4.
崔洋  李静  张林 《物理学报》2021,(5):90-97
采用基于密度泛函理论的紧束缚方法计算研究了外加横向电场对边缘未加氢/加氢钝化的扶手椅型石墨烯纳米带的电子结构及电子布居数的影响.计算结果表明,石墨烯纳米带的能隙变化受其宽带影响.当施加沿其宽度方向的横向外加电场时,纳米带的能带结构及态密度都会产生较大的变化.对于具有半导体性的边缘未加氢纳米带,随着所施加电场强度的增加,...  相似文献   

5.
6.
By using first-principles calculations based on density functional theory and non-equilibrium Green's function, we present the electronic transport properties of two kinds of devices based on armchair phosphorene nanoribbons, namely, A device, and B device. In A device, the phosphorus atoms in the center of armchair phosphorene nanoribbon have been replaced by impurity atoms of the S and Si, whereas in the B device, the impurity atoms are at the edge of ribbon. The results show that the current–voltage characteristics for both devices have striking nonlinear features and the rectifying behaviors strongly depend on the positions of impurity atoms. The highest rectification ratio is obtained about 125992 at 0.8 V bias for B device. Moreover, only for A device, robust negative differential resistance is observed with a high peak–valley ratio 27500 in the bias range [?0.2,?0.6] V. The mechanism of the rectification behavior is analyzed in terms of the evolution of energy levels of the related electrodes and transmission spectra as well as the projected self-consistent Hamiltonian eigenvalues with the applied bias voltage. The results indicate that the asymmetric doping of the impurity atoms can lead to a robust rectification which can be utilized to design phosphorene-base rectifier with good performance.  相似文献   

7.
We study the electronic properties of a quantum system formed by two charged particles moving in a quantum wire (QW) with finite width σ and interacting through a Coulomb potential under an uniform electric field E applied over a spatially confined region of thickness 2a (-a<z<a). The number of electronic states of this finite width system is twice the number of the less realistic system with σ=0.  相似文献   

8.
Solutions for the problem on the equilibrium configurations of uncharged conducting liquid jets in a transverse electric field are obtained. These solutions correspond to finite-amplitude non-axisymmetric azimuthal deformations of the surface of a round jet: the jet is stretched along the field in its cross-section. The range of electric fields is determined for which solutions of the problem exist. If the electric field strength is over some critical value, the electrostatic equations have no solution, and the jet splits. The obtained solutions are qualitatively examined for stability under small azimuthal perturbations.  相似文献   

9.
We present a study of the effect of externally applied vertical electric field on the optical properties of single InGaN/GaN quantum dots via microphotoluminescence spectroscopy. This is achieved by incorporating the quantum dot layer in the intrinsic region of a p–i–n diode structure. We observe a large blue energy shift of 60 meV, which is explained by the partial compensation of the internal piezoelectric field. The energy shift dependence on the applied field allows the determination of the vertical component of the permanent dipole and the polarizability. We also present theoretical modelling of our results based on atomistic semi-empirical tight-binding simulations. A good quantitative agreement between the experiment and the theory is found.  相似文献   

10.
A variational approach is used to study the ground state of a bound polaron in a spherical quantum dot under an external electric field. The binding energy of the hydrogenic impurity state is calculated by taking the interaction of an electron with both the confined longitudinal optical phonons and the surface optical phonons into account. The interaction between impurity and longitudinal optical phonons has also been considered to obtain the binding energy of a bound polaron. It shows that the polaron effects give significant corrections to the binding energy and its Stark energy shift. The external electric field increases the phonon contributions to the binding energy.  相似文献   

11.
We have performed single dot photoluminescence and time-resolved ensemble photoluminescence measurements on InAs quantum dots embedded in a lateral in-plane p–i–n or n–i–n device, respectively, which makes the application of lateral electric fields, i.e. field direction perpendicular to the growth direction, feasible. Time-resolved measurements show an increase in the radiative lifetime of up to 30% with increasing field. We attribute this to the reduced overlap between the electron and hole wave functions. Single dot spectroscopy revealed a small red-shift of the emission energies of maximum 0.5 meV. This shift can be explained by the quantum confined Stark effect taking into account that the red-shift due to the band-tilting is partly compensated by a decrease in exciton binding energy.  相似文献   

12.
本文应用半径典理论、密度矩阵方法和探索场中二能级系统的能级斯塔克(Stark)分裂。指出与无弛豫效应相比较,弛予效应不仅改变了由光学斯塔克效应所产生的分裂能级的权重、展宽了这些能级,而且还出现新的分裂能级。  相似文献   

13.
Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree–Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.  相似文献   

14.
Thermoelectric effects, including Seebeck coefficient (S), thermal conductance (κ), and figure of merit (ZT), in a laterally coupled double-quantum-dot (DQD) chain with two external nonmagnetic contacts are investigated theoretically by the nonequilibrium Green's function formalism. In this system, the DQD chain between two contacts forms a main channel for thermal electrons transporting, and each QD in the main chain couples laterally to a dangling one. The numerical calculations show that the Coulomb interactions not only lead to the splitting of the asymmetrical double-peak structure of the Seebeck coefficient, but also make the thermal spectrum show a strong violation of the Wiedemann–Franz law, leading to a colossal enhancement in ZT. These results indicate that the coupled DQD chain has potential applications in the thermoelectric devices with high thermal efficiency.  相似文献   

15.
We derive the analytical form of the Green's function of 2-dimensional electrons with lateral confinement in a perpendicular magnetic field. The confinement potentials considered are infinite barriers at radius R (quantum dot) and at r and R (quantum ring).  相似文献   

16.
17.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses.  相似文献   

18.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

19.
雷暴云内电场力对起电和电荷结构的反馈作用   总被引:2,自引:0,他引:2       下载免费PDF全文
利用美国国家强风暴实验室(NSSL)发展的耦合了详细起电机制和放电过程的中尺度电耦合数值模式WRF(weather research forecasting)-Elec,在NSSL云微物理双参数化方案中增加了电场力对霰、雹粒子降落末速度的影响,完善了WRF-Elec模式的物理过程,建立了双向耦合WRF-Elec模式.利用改进后的WRF-Elec模式,通过敏感性数值实验,定量分析了雷暴云内电场力对起电和电荷结构的反馈作用.结果发现:雷暴云发展旺盛阶段,由于电场力作用,霰、雹粒子质量加权平均降落末速度的瞬时变化极值可以超过4 m/s,但这种情况仅出现在雷暴云内局部区域,并且维持时间较短;电场力对直径小且数浓度较低的霰和雹粒子影响较大,但这种影响不是由单一物理量决定,而是由电场强度和霰、雹粒子的电荷密度、极性以及粒子的直径与数浓度共同决定;电场力通过对霰、雹粒子降落末速度的调整,增强了雷暴云内感应、非感应起电率,且前者远大于后者,云内局部产生-0.6—1.2 n C/m~3总电荷密度的变化,从而使电荷结构重新分布,局部垂直电场强度增强5 k V/m,总闪电数增加,与此同时,雷暴云内降水粒子的微观增长过程也发生改变.总体上,电场力对雷暴云起电过程的作用为正反馈,电场力对雷暴云电荷结构的反馈作用不可忽略.  相似文献   

20.
朱方  张兆传  戴舜  罗积润 《物理学报》2011,60(8):84103-084103
基于次级电子倍增动力学模型和次级电子发射曲线,运用蒙特卡罗方法模拟电介质表面具有纵向射频电场作用下的单边次级电子倍增现象,研究次级电子倍增的表面电场敏感曲线和时间演化图像. 以一个S波段射频介质窗为例,计算次级电子在其介质表面的沉积功率. 结果表明,纵向射频电场可能加剧电介质表面的次级电子倍增效应,易于导致介质片破裂,不利于高频能量传输. 关键词: 纵向射频场 次级电子倍增效应 蒙特卡罗方法 功率沉积  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号