首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic structure of tetragonal U2N2Te has been studied by means of neutron diffraction on polycrystalline sample. A ferromagnetic alignment of the magnetic moments below 68 K has been confirmed. The best agreement between the calculated and observed intensities of the magnetic reflections has been obtained for the moment direction forming an angle 70 ± 5° to the tetragonal axis. The magnitude of the uranium ordered moment was found to be 2.50 ± 0.05 μB.  相似文献   

2.
Neutron diffraction studies and magnetic measurements on the compounds TbNi2Si2 (1), HoCo2Si2 (2) and TbCo2Si2 (3) revealed a collinear antiferromagnetic order below TN = 10 ± 1 K (1), TN = 13 ± 1 K (2) and TN = 30 ± 2 K (3) with the rare earths moments oriented along the c-axis [m0 = 8.8 ± 0.2 μB (1), m0 = 8.1 ± 0.2 μB (2), m0 = 8.8 ± 0.2 μB (3)] and the corresponding wavevector are k = [12120] (1) andk = [ 0 0 1] (2) (3). The magnetic structure of the compounds HoCo2Si2 and TbCo2Si2 consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically (+?+?) while for TbNi2Si2 the ordering within (0 0 1) plane is antiferromagnetic and the planes (0 0 1) are indeed decoupled.  相似文献   

3.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

4.
The new HTB (Hexagonal Tungsten Bronze) phases of FeF3 and (H2O)0.33 FeF3 have been characterized by 57Fe Mössbauer spectroscopy; they have saturation hyperfine fields of (577 ±3) and (560±3) kOe and magnetic ordering temperatures (97±2) and (128.7 ± 0.5) K, respectively. The magnetic ordering temperature and the electric hyperfine interactions on iron are sensitive to the presence of zeolitic water in the system. Hydrolysed samples have also been investigated.  相似文献   

5.
O17 nuclear magnetic resonance has been observed in metallic V2O3 with frequency shifts from (?0.10 ± 0.02)-(?0.05 ± 0.02) per cent between 170 and 460°K respectively, a linewidth of 37 ± 5 oe and spin-lattice relaxation rate 1/T1 ≈ 60 sec?1 at 296°K. From these quantities, covalency parameters fs/2S = ? 0.35 × 10?3 and ?π/2S ≈ ? 0.07 are calculated. One of the two vanadium 3d electrons in the antiferromagnetic state below the 170°K metal-insulator transition is inferred to lie in a non-magnetic state, while covalent charge transfer augments the spin moment of the other 3d electron to the observed 1.2 μB.  相似文献   

6.
The linear birefringence (LB) of the antiferromagnet (CH2)2(ND3)2MnCl4 has been measured as a function of temperature and in magnetic fields up to 100 kOe. The temperature dependence of the LB points to a pronounced two dimensional magnetic behaviour. No anomaly corresponding to the effect of three dimensional ordering could be detected at TN. In theffield dependent measurements the spin flop at HSF = 33.6 ± 1 kOe (T = 4K) could clearly be detected.  相似文献   

7.
We used the spin-Hamiltonian method for the analysis of the electron paramagnetic resonance (EPR) spectrum of Fe3+ as a probe ion in (NH4)2AlF5·H2O single crystalline basic material. The theoretical expressions for the magnetic field (at which the fine structure transition lines appear) versus the angle between the magnetic field and the axis of symmetry of the magnetic complex are also given. These values were calculated by applying the perturbation theory to the second-order terms. From the experimental results (at 300 K and 9.21 GHz), the spin-Hamiltonian parameters were deduced:D=(668±10)·10−4 T,E=(−56±10)·10−4 T,a=(−54±10)·10−4 T,F=(30±10)·10−4 T. An isotropic superhyperfine structure was evidenced for the five fluorine ions. The obtained EPR data were used to determine the local symmetry of the Al3+ ion. A good agreement with X-ray diffraction measurements was found.  相似文献   

8.
The nature of the magnetic interactions in the chain compound Rb2FeF5 has been investigated using neutron diffraction and magnetic measurements under high applied fields. Rb2FeF5 orders antiferromagnetically at TN = 8.0 ± 0.5 K; the magnetic structure is of the AZ + GX mode and the moment of the Fe3+ ion extrapoled to 0K is 3.5 ± 0.2 μB, this low value being due to zero-point spin reduction. Within a chain the Fe3+ ions are antiferromagnetically coupled with an exchange constant of J/k = ?8.8 K. A spin-flop behavior has been observed and interpreted on the basis of the molecular field theory. The critical field was found to be HC = 65 kOe at 1.7 K.  相似文献   

9.
Low-field magnetic susceptibility and the magnetic field dependence of magnetization of Metglas 2605 A (Fe78Mo2B20) were studied between 300 and 600 K and in fields up to 10kG. It is shown here that for an amorphous ferromagnetic alloy, the various methods of determination of Curie temperature Tc give the same value, which in this case is (564 ± 1) K. The critical exponent γ is 1.7 ± 0.1. Our low-field susceptibility measurements on Metglas 2605 (Fe80B20) gives a Tc of (634 ± 3) K while the reported high-field method value is 647 K. These results are discussed in terms of crystallization temperatures.  相似文献   

10.
A neutron diffraction study of polycrystalline PrCu2Si2 [1], PrCu2Ge2 [2], PrFe2Ge2 [3] and NdFe2Ge2 [4] intermetallics carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic order below TN = 19 ± 1 K [1], TN = 16 ± 1 K [2], TN = 9 ± 1 K [3] and 13 ± 1 K [4]. Magnetic moment, parallel to the c-axis is localized on RE ions only. The magnetic structure of these compounds consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically with sequence +-+- for PrCu2Si2 and PrCu2Ge2 and +--+ for PrFe2Ge2 and NdFe2Ge2. The RE moments amount close to the free ion values for Fe containing compounds but are smaller in those containing Cu suggesting a fairly strong influence of crystal field.  相似文献   

11.
The diffraction maxima (001) and (100) of the Mn1.11Al0.89 alloy have been measured by the neutron powder diffraction method in the temperature range from 23 to 427 C. The Curie temperature is found to be (404 ±2)°C. Temperature dependence of the magnetic structure factor gave the critical exponent β = 0.31±0.02.The disorder parameter has been found to decrease with the temperature. A convenient expression describing this behaviour has been proposed and discussed.  相似文献   

12.
The heat capacity of the layer compound, tetrachlorobis (methylammonium) manganese II, (CH3NH3)2MnCl4, has been measured over the range 10K <T<300K. In this region, two structural phase transitions have been observed previously by other techniques: one transition is from a monoclinic low temperature (MLT) phase to a tetragonal low temperature (TLT) phase, and the other is from TLT to an orthorhombic room temperature (ORT) phase. The present experiments have shown that the lower transition (MLT→TLT) occurs at T = 94.37±0.05K with ΔHt = 727±5 J mol?1 and ΔSt = 7.76±0.05 J K?1 mol?1, and the upper transition (TLT→ORT) takes place at T = 257.02±0.07K with ΔHt = 116±1J mol?1 and ΔSt = 0.451±0.004 J K?1mol?1. These results are discussed in the light of recent measurements on (CH3NH3)2CdCl4, and also with regard to a recent theoretical model of the structural phase transitions in compounds of this type.In addition to the structural phase transitions, (CH3NH3)2MnCl4 also undergoes magnetic ordering at T < 150K. The magnetic component to the heat capacity, as deduced from a corresponding states comparison of the heat capacity of the present compound with that of the Cd compound, is shown to be consistent with the behaviour expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

13.
Neutron diffraction expriment has been performed on the quasi-one-dimensional antiferromagnet, CsMn0.96Co0.04Cl3.2D2O, in which two different magnetic ions with competing spin anistropies are randomly distributed. Magnetic scattering data show that the easy spin axis tilts substantially (~ 40° from the easy axis of Mn salt to that of Co salt at 3.8 K) even for such a dilute mixture. The magnetic ordering temperature TN can be definitely determined owing to the absence of the diffuse Bragg intensity at TN, to be 4.80 ± 0.02 K. The obtained value of the critical index, β = 0.23 ± 0.02 is found to be considerably smaller in magnitude than both of those found in the Mn and Co salts. Some possible origins for the small β are discussed. The concentration dependence of TN IS analyzed in terms of the impurity-linked chain model with |JMnCo|k = 14.7 K.  相似文献   

14.
A small polycrystalline ingot sample of NpCo2Si2 (weight ≈ 1.5 g) has been studied by neutron diffration between 2 and 160 K on the multi-detector D1B of ILL, Grenoble. At 100 K, the crystal structure is body-centered tetragonal (space group 14/mmm) with a = 3.886 Å and c =9.649 Å. Below TN = (44 ± 2) K, seven superlattice lines are observed which correspond to a simple tetragonal lattice with lattice constants as above. They are consistent with a type I antiferromagnetic structure of the Np (2a) sublattice, with (001) ferromagnetic sheets coupled antiferromagnetically according to the sequence +-+-. At 6 K, the neptunium moment obtained from the diffracted intensities is: (1.48 ± 0.20)μuB, and makes an angle 52° ± 15° with the c axis. The cobalt moment is certainly smallet than 0.3μuB. The Np moment correlates well with the 237Np hyperfine field deduced from Mos?sbauer spectroscopy; the sublattice magnetization-temoperature curve follows very well the J=12 brillouin curve. The magnetism is therefore probably of lovalized character in this compound. An isomorphous sample of NpCu2Si2 (a = 3.990 Å c = 9.920 Å) was shown to be ferromagnetic below (41 ± 2) K, with the Np moment [1.5 ± 0.2)μuB] aligned along the c axis.  相似文献   

15.
In this work the deexcitation of the B3Π+(Ou+), v′ = 14 level of I2 after pulsed laser excitation has been studied. The quenching cross sections by collisions with I2, H2, CO, and CH4 have been measured. The experimental results are 190 ± 14, 2.5 ± 0.3, 15.1 ± 0.4, and 18.0 ± 0.6 Å2, respectively. These values are compatible (within 30%) with the semiempirical scaling law of proportionality with the product of polarizability and the square root of reduced mass.  相似文献   

16.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

17.
Thermal behavior of such fundamental physical properties as polarization, pyroelectric current, dielectric constant and paramagnetic susceptibility are reported for dilithium heptamolybdotetragadolinate, Li2Gd4 (MoO4)7. The ferroelectric transition point has been determined by various methods and the results compared. The most reliable value of the Curie point has been obtained by the measurement of differential magnetic susceptibility as a function of temperature and is found to be 52±2°C. The room temperature values for the relative dielectric constant and paramagnetic susceptibility are 51.5 and 59.8 x 10-6 cm3. g-1, respectively. From the susceptibility measurements the values obtained for the Curie constant, C, and the paramagnetic Curie point, θp, are 1.79 x 10-2 cm3 . g-1 . deg and 247°K, respectively. It is believed that Li2Gd4 (MoO4)7 could be antiferromagnetic between 273 and 325°K.  相似文献   

18.
Values of γ=0.33±0.01 mJ/K2·g atom and θD=176±1 K were found for LaPd3. PrPd3 shows magnetic ordering below 0.6 K and a Schottky anomaly whose maximum lies around 1.8 K. The crystalline field at the Pr3+ site creates a Γ3 (doublet) excited state lying 4 K above the Γ5 (triplet) ground state.  相似文献   

19.
The isotope shift in the v6 band of CH3I has been measured with high resolution for the radioisotope 129I (half-life = 1.6 × 107 y) with respect to the stable 127I, using tunable diode laser spectroscopy. The average shift obtained from 30 transitions, free from interference in the RQ(J, 3) and RQ(J, 4) branches, amounted to (-0.0135 ± 0.0006) cm-1. The abundance ratio 129I/127I in the gas mixture was determined spectroscopically on RQ(16, 3) and found to be (0.032 ± 0.003), as compared to a mass-spectrometric analysis of (0.030 ± 0.001). The self and air broadening coefficients measured on RR(6, 0) of CH3127I were (32 ± 3) MHz Torr-1 and (10.4 ± 1.5) MHz Torr-1 respectively. The line strengths for RQ(16, 3) were found to be (2.0 ± 0.2) × 10-21 cm-1 mol-1 cm2 for both CH3127I and CH3129I.  相似文献   

20.
An approximate theory of dipolar relaxation by the soft modes of magnetic vacancies and dislocations gives 23 and 1 for the power-law exponents of T2, while proton T1 and EPR linewidth measurements yield 0.67 ± 0.04 and 1.0 ± 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号