首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

2.
In this paper the surface activity of protein mucin at solution/air interface has been studied. The experiments of the adsorbed protein at solution/air interface have been carried out with a range of protein concentrations at a defined pH. The adsorption of the protein to solid surfaces and the degree of hydrophobicity at solid/solution interface of mucin have been evaluated at different pH and in the presence of Hofmeister electrolyte. The results from these studies have been further substantiated by surface potential measurements of mucin covered surface on stainless steel. Quartz crystal microbalance (QCM) has been used to follow the protein adsorption kinetics from solution to solid surface. The results from these measurements show that the adsorption behavior has a remarkable dependence on the degree of maximum coverage and is almost independent of the ionic strength. Other characteristic features such as maximum adsorption values at the protein isoelectric point (IEP4.7) and low-affinity isotherms that showed surface saturation even under unfavorable electrostatic conditions have been observed. The amount of mucin adsorbed in the presence of electrolytes has been estimated using electron spectroscopy for chemical analysis (ESCA). The study clearly shows that there exists an inverse relationship between the hydrophobicity and surface tension of the protein and also on the hydrated radius of Hofmeister electrolyte used.  相似文献   

3.
An experimental investigation on the adsorption of F(ab')2 from rabbit IgG onto polystyrene (PS) latex beads is described. All adsorption isotherms were of high affinity and showed well-defined plateaus. Maximum protein adsorption was found around the average isoelectric point (IEP) of the dissolved protein. According to the findings, the F(ab')2 adsorption on the polystyrene surface is strongly irreversible with respect to ionic strength changes. The pH changes, however, exert a certain effect on the adsorption-desorption process of F(ab')2 on negatively charged polystyrene surfaces. In order to determine the role played by the electrostatic forces in the F(ab')2 adsorption onto negatively charged latex particles, an electrokinetic study of the protein-latex complexes has also been carried out. The isoelectric pH of the F(ab')2-PS complexes is always smaller than the IEP of the dissolved F(ab')2, indicating that the PS surface charge must partly compensate the positive charge on the protein. Finally, a comprehensive study on the colloidal stability of the sensitized latex beads was performed.  相似文献   

4.
Crosslinked N,N′-Diethylaminoethyl (DEAE) groups containing dextran microbeads have been used in human serum albumin (HSA) adsorption-desorption studies. For the HSA adsorption onto positively charged hydrophilic DEAE dextran microbeads, the adsorption kinetic was slightly decreased by the changing concentration of the protein solution. Adsorption kinetics and equilibrium isotherms for the adsorption of HSA on crosslinked DEAE dextran have been determined experimentally. Modeling of the adsorption processes on DEAE dextran microbeads were realized by applying different adsorption isotherms. Among the several isotherm equations, Langmuir and Freundlich adsorption isotherms were investigated depending on the two temperatures. These were only slightly dependent on the initial concentration of HSA but were considerably affected by the pH of the medium. The HSA adsorption capacity factor and the adsorption equilibrium constant were obtained and mathematical modeling of adsorption, adsorption rate constants and maximum adsorption were determined. Besides the adsorption mechanism, optimum ionic strength and optimum pH also were investigated. Desorption studies and desorption ratio of the system were determined for optimum medium conditions. It was been proved both experimentally and theoretically that human HSA is adsorbed by electrostatic attraction, ion-exchange, hydrophobic interaction and/or hydrogen bonding.  相似文献   

5.
Methylene blue and its congeners as model dyes were adsorbed onto stainless steel particles at different ionic strengths, pH values, and ethanol contents, and the adsorption mechanism was investigated. A Fourier transform infrared spectroscopy (FTIR) analysis of the dyes adsorbed on the stainless steel plate was carried out to determine the orientations of the adsorbed dyes on stainless steel surface. The adsorption isotherms for all the dyes tested were approximated by a Langmuir equation (Q=Kq(m)C/(1+KC)) in most cases except under strongly basic conditions. From the ionic strength and ethanol content dependencies of the K value in the Langmuir equations, both the electrostatic and hydrophobic interactions were indicated to contribute to the adsorption of the dyes at neutral pH. By comparing the K and q(m) values for the methylene blue congeners and with the aid of the FTIR analyses, it was found that the kind of substituent groups at most positions of the polyheterocycles of methylene blue strongly affects the adsorption behavior, particularly the area occupied by an adsorbed dye molecule, the affinity for the stainless steel surface, and the orientation of the adsorbed dye molecule on the stainless steel surface.  相似文献   

6.
Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.  相似文献   

7.
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hu?ckel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential).  相似文献   

8.
Although several investigations have been reported on the effect of pH or ionic strength on protein adsorption, most of them have been carried out with protein monolayers and not with single molecules. We have used atomic force microscopy to image, in phosphate buffer, single fibrinogen molecules adsorbed on mica and compare the surface coverage at variable pH (7.4, 5.8, 3.5) or ionic strength (15, 150, 500 mM) conditions. The images obtained and the statistical analysis of the surface coverage indicate adsorption enhancement at the IEP of fibrinogen (pH 5.8) and minimum adsorption at pH 3.5. On the other hand, more protein was adsorbed when the salt concentration of the buffer at pH 7.4 was increased from 15 to 150 mM. However, further increase of salt concentration up to 500 mM resulted in decreased adsorption. To confirm the aforementioned results an approaching bare Si(3)N(4) tip was used as an electrostatic analogue to a protein molecule and interaction force curves between it and the substrate were recorded. The results were in consistence with the double layer theory which justifies the screening of electrostatic repulsion as the salt concentration increases.  相似文献   

9.
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.  相似文献   

10.
The interaction of a widely used Calgon™ polyphosphate dispersing reagent with aluminium-doped titania pigment particles has been investigated using electrokinetic and rheological studies combined with adsorption isotherms. The influence of pH, aluminium dopant concentration and polyphosphate concentration is reported. Polyphosphate adsorption density and affinity with the titania pigment surface is highest under acidic solution conditions. This however, does not necessarily transfer to enhanced dispersion properties at low pH values. At pH 9, the polyphosphate adsorption density correlates directly with a reduction in pigment particle interactions making polyphosphate an effective titania pigment dispersant under alkaline conditions. Conversely, at pH 4, polyphosphate adsorption densities less than 0.1 mg m−2 have no effect on the colloidal stability of the titania particles and their Newtonian flow behaviour. At adsorption densities of 0.1 mg m−2, approaching the iep (near 0.2 mg m−2), the suspension aggregates. It is not until the polyphosphate adsorption density is greater than 0.3 mg m−2 that the titania pigment suspension begins to restabilise. It is proposed that chemisorption dominates polyphosphate adsorption at pH 9 whilst at pH 4 a combination of chemisorption and electrostatic adsorption occurs. Stabilisation by the polyphosphate present at the pigment surface depends on both electrostatic and steric effects. At high pH, both are effective but at low pH, electrostatic stabilisation is partly neutralised and higher adsorption densities are required for effective stabilisation.  相似文献   

11.
研究蛋白质在固相表面的静电吸附特性,进而控制蛋白质在修饰表面的静电吸附尤为重要,表面等离子体子共振可以检测金属表面吸附物质厚度和折射率的变化^[1]。这种技术已在研究生物分子相互作用^[2]和考察自组装单层的形成^[3]及蛋白质在固体表面吸附行为^[9-11]等方面得到广泛的应用。对蛋白质在固体表面吸附行为的研究多为考察不同的蛋白质在不同的修饰表面的吸附行为。然而,对蛋白质在修饰表面静电吸附的本质影响因素的研究却少有报道^[4]。本文使用表面等离子体子共振技术实时研究了蛋白质在甲羧基化葡聚糖修饰表面的静电吸附与溶液pH值及离子强度的依赖关系。  相似文献   

12.
Adsorption and desorption of human serum albumin (HSA) from aqueous solutions on mica were studied using AFM and in situ streaming potential measurements. A quantitative interpretation of these experiments was achieved in terms of the theoretical model postulating a 3D adsorption of HSA molecules as discrete particles. These measurements, performed for various ionic strength, allowed one to determine the coverage of HSA as a function of the zeta potential of mica. This allowed one to determine the amount of irreversibly bound HSA as a function of the ionic strength. It was found that the coverage of irreversibly adsorbed HSA increased from 0.52 mg m(-2) for I=1.3×10(-3) M to 1.6 mg m(-2) for I=0.15M (pH=3.5). The significant role of ionic strength was attributed to the lateral electrostatic repulsion among adsorbed HSA molecules, positively charged at this pH value. This was quantitatively interpreted in terms of the effective hard particle concept previously used for colloid particles. The experimental results confirmed that monolayers of irreversibly bound HSA of a well-controlled coverage can be produced by adjusting the ionic strength of the suspension.  相似文献   

13.
In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In contrast, after 72 h, nearly all the adsorbed albumin molecules effectively exchange with other albumin molecules.  相似文献   

14.
Mesoporous TiO(2) nanocontainers (NCs) covered with polyelectrolyte multilayers were adsorbed on self-assembled monolayer (SAM) modified gold substrates at different values of pH and ionic strength. The adsorption process was followed in situ by means of a quartz crystal microbalance (QCM) and the morphology of the adsorbate was investigated by means of FE-SEM images taken of the substrates after each adsorption process. Deposition could be achieved if either the particles and the surface had opposite charge, or if the salt concentration was sufficiently high, reducing the repulsion between the spheres and the surface. In the latter case the adsorption kinetics could be explained in the context of the DLVO-theory. Using conditions of like charges, one has a means to control the speed of deposition by means of ionic strength. However, interparticle aggregation and cluster deposition on the surface were observed at high ionic strength. Such conditions have to be avoided to obtain a uniform deposition of separated nanocontainers on the surface.  相似文献   

15.
Adsorption of natural organic matter (NOM) onto seven activated carbons with a wide range of surface properties was studied at high and low ionic strength over a range of pH values. From adsorption isotherm studies it was found that, for six of seven carbons, at low surface concentrations, increased ionic strength decreased NOM adsorption. As the surface concentration increased, the adsorption isotherms converged and intersected, after which the addition of salt resulted in increased adsorption. This “crossover point” marked a change in the adsorption mechanism from the “screening reduced” to the “screening enhanced” adsorption regimes. The adsorption mechanisms are extremely complicated and appear attributable to various factors, including electrostatic forces, pore volume distribution, and chemical interactions between the NOM and the surface functionalities on the carbon surfaces.  相似文献   

16.
In this paper the adsorption of a monoclonal antibody IgG-1 isotype against HBsAg onto positively and negatively charged polystyrene beads has been studied. To determine the role played by electrostatic forces in the adsorption process different pH values were used. It was confirmed that the affinity of adsorption isotherms depends on the electrostatic interaction between protein and polymer surface. The maximum adsorption amount is located around the i.e.p. of the dissolved protein, and decreases markedly as pH moves away. Thus, the major driving force for adsorption of monoclonal antibodies on polystyrene beads comes from the hydrophobic interaction between the antibody molecules and the adsorbent surface. Desorption of preadsorbed IgG molecules by increasing ionic strength has shown that the positively charged polystyrene is also more hydrophobic in character than the negatively charged one. Finally, electrokinetic experiments have determined that the electric double layer (e.d.l.) of monoclonal antibody changes as the consequence of adsorbing on charged polymer surfaces.  相似文献   

17.
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.  相似文献   

18.
The adsorption behavior of various amino acids on a stainless steel surface was investigated at 30 degrees C and over a pH range of 3-10. Acidic and basic amino acids except histidine adsorbed remarkably at pH 3-4 and 7-10, respectively, and showed Langmuir-type adsorption isotherms. The effects of pH and ionic strength on the adsorption isotherms were investigated to analyze the interactions between amino acids and adsorption sites on the stainless steel. Hydrophobic amino acids and glycine showed only small adsorbed amounts at all pHs tested. For the acidic and basic amino acids, reversibility of the absorption and the influence of the ionic strength on the adsorption behavior were examined. The adsorption isotherms of the derivatives of aspartic acid were also measured in order to examine the contribution of the carboxylic groups of acidic amino acids to the adsorption. Furthermore, a Fourier-transform infrared spectroscopic analysis and semiempirical molecular orbital calculation were carried out to analyze the ionization states and the configuration of the amino acids adsorbed on a stainless steel surface. These investigations suggest that the acidic and basic amino acids adsorb through two electrostatic interactions of two ionized groups in the amino acid with a stainless steel surface. Copyright 2000 Academic Press.  相似文献   

19.
This work demonstrates how electrostatic interactions, described in terms of the classical DLVO theory, influence colloid particle deposition phenomena at solid/liquid interfaces. Electrostatic interactions governing particle adsorption in both non-polar and polar media (screened interactions) are discussed. Exact and approximate methods for calculating the interaction energy of spherical and non-spherical (anisotropic) particles are presented, including the Derjaguin method. Phenomenological transport equations governing particle deposition under the linear regime are discussed with the limiting analytical expressions for calculating initial flux. Non-linear adsorption regimes appearing for higher coverage of adsorbed particles are analysed. Various theoretical approaches are exposed, aimed at calculating blocking effects appearing due to the presence of adsorbed particles. The significant role of coupling between bulk transport and surface blocking is demonstrated. Experimental data obtained under well-defined transport conditions, such as diffusion and forced convection (impinging-jet cells), are reviewed. Various experimental techniques for detecting particles at interfaces are discussed, such as reflectometry, ellipsometry, streaming potential, atomic force microscopy, electron and optical microscopy, etc. The influence of ionic strength and flow rate on the initial particle deposition rate (limiting flux) is presented. The essential role of electrostatic interactions in particle deposition on heterogeneous surfaces is demonstrated. Experimental data pertinent to the high-coverage adsorption regime are also presented, especially the dependence of the maximum coverage of particles and proteins on the ionic strength. The influence of lateral electrostatic interactions on the structure of particle monolayers is elucidated, and the links between colloid and molecular systems are pointed out.  相似文献   

20.
The rate and extent of adsorption of a protein and a humic acid onto membranes was measured at varying conditions of pH and ionic strength. The resistance-in-series approach was used to calculate reversible and irreversible fouling resistances, which were then compared for static (no flow) and dynamic runs in order to determine the effect of convective flow and electrostatic interactions on fouling behavior. Although convective forces tended to increase the amount of material accumulated near the membrane surface, electrostatic interactions played a stronger role, as evident in the irreversible adsorption results for the static and dynamic cases. Electrostatic interactions affected reversible and irreversible resistances. Both resistances were higher at the isoelectric point (iep) of the protein and decreased at higher pH values. Humic acid adsorption decreased as pH was increased from 4.7 to 10. Humic acid filtration resulted in a higher resistance per unit mass than protein filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号