首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The palladium(II)-substituted tungstosilicate [Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)](9)(-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)K(2)Na(4)[Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)].5H(2)O (1a), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 16.655(3) A, b = 19.729(4) A, c = 25.995(5) A, beta = 95.46(3) degrees , and Z = 4. Polyanion 1represents the first structurally characterized palladium(II)-substituted tungstosilicate. The title polyanion consists of two (A-alpha-SiW(9)O(34)) Keggin moieties linked via a [WO(H(2)O)](4+) group and two equivalent, square-planar Pd(2+) ions leading to a sandwich-type structure with C(2)(v) symmetry. The central belt of 1 contains also one potassium and two cesium ions. Polyanion 1 was synthesized by reaction of Pd(CH(3)COO)(2) with K(10)[A-alpha-SiW(9)O(34)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium shows a Pd(0) deposition process on the glassy carbon electrode surface. The corresponding wave and that of tungsten redox processes could be separated clearly during the first few runs before their merging into a broad composite wave. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. As judged from hydrogen sorption/desorption pattern, the quality of the film deposited from polyanion 1 is better than that of a film deposited directly from Pd(2+) solutions.  相似文献   

2.
The electrochemical behavior of the ball-shaped heteropolytungstates [[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-XW(9)O(34))(12)](36-) (X=P, 1; As, 2) was examined in aqueous electrolytes by redissolution of their respective mixed cesium-sodium salts Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12) (A-PW(9)O(34))(12)]149 H(2)O (Cs(14)-1) and Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-AsW(9)O(34))(12)]149 H(2)O (Cs(14)-2). In the studied media, Cs(14)-2 is readily soluble in contrast to the significantly less soluble Cs(14)-1. The solubility of Cs(14)-1 is increased by the presence of Li(+) ions in solution. Gel filtration studies with 1 and 2 rule out a decay of the dodecameric spherical assemblies to Keggin-based monomers on the timescale of the experiment. By UV/Vis spectroscopy and cyclic voltammetry, 2 was found to be significantly less stable than 1 and both polyanions also show rather different decomposition pathways. Polyanion 1 collapses first into Keggin-type monomers which might contain the trilacunary [A-alpha-PW(9)O(34)](9-). The final monomeric species obtained from 1 appears to be very similar to [PW(11)O(39)](7-), which is the final transformation product of [A-alpha-PW(9)O(34)](9-) in the same media. In contrast, 2 does not seem to follow an analogous transformation pathway as that of the trilacunary [A-alpha-AsW(9)O(34)](9-). Importantly, stabilization of 1 is observed in chloride media. The fairly long-term stability of 1 in 1 M LiCl, pH 3, has allowed for its electrochemical study to be carried out. The solid-state cyclic voltammogram of 1 entrapped in a carbon paste electrode shows the same characteristics as 1 dissolved in chloride solutions, thus supporting the conclusion that the polyanion is stable in these environments. Controlled potential coulometry on 1 indicates that the number of electrons consumed in the first wave is larger than twenty. To our knowledge, 1 constitutes the first example of a molecule that can take up such a large number of electrons resulting in a chemically reversible W-wave. These properties show promise for future fundamental and applied studies. Polyanion 1 is also efficient in the electrocatalytic reduction of NO(x), including nitrate. Finally, a remarkable interaction was found between 1 and NO, a highly promising feature for biomimetic applications.  相似文献   

3.
The novel heteropolyanion [Cu(4)K(2)(H(2)O)(8)(alpha-AsW(9)O(33))(2)](8)(-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic studies. Single-crystal X-ray analysis was carried out on [K(7)Na[Cu(4)K(2)(H(2)O)(6)(alpha-AsW(9)O(33))(2)].5.5H(2)O](n)(K(7)Na-1), which crystallizes in the tetragonal system, space group P42(1)m, with a = 16.705(4) A, b = 16.705(4) A, c = 13.956(5) A, and Z = 2. Interaction of the lacunary [alpha-AsW(9)O(33)](9)(-) with Cu(2+) ions in neutral, aqueous medium leads to the formation of the dimeric polyoxoanion 1 in high yield. Polyanion 1 consists of two alpha-AsW(9)O(33) units joined by a cyclic arrangement of four Cu(2+) and two K(+) ions, resulting in a structure with C(2)(v)() symmetry. All copper ions have one terminal water molecule, resulting in square-pyramidal coordination geometry. Three of the copper ions are adjacent to each other and connected via two micro(3)-oxo bridges. EPR studies on K(7)Na-1 and also on Na(9)[Cu(3)Na(3)(H(2)O)(9)(alpha-AsW(9)O(33))(2)].26H(2)O (Na(9)-2) over 2-300 K yielded g values that are consistent with a square-pyramidal coordination around the copper(II) ions in 1 and 2. No hyperfine structure was observed due to the presence of strong spin exchange, but fine structure was observed for the excited (S(T) = 3/2) state of Na(9)-2 and the ground state (S(T) = 1) of K(7)Na-1. The zero-field (D) parameters have also been determined for these states, constituting a rare case wherein one observes EPR from both the ground and the excited states. Magnetic susceptibility data show that Na(9)-2 has antiferromagnetically coupled Cu(2+) ions, with J = -1.36 +/- 0.01 cm(-)(1), while K(7)Na-1 has both ferromagnetically and antiferromagnetically coupled Cu(2+) ions (J(1) = 2.78 +/- 0.13 cm(-)(1), J(2) = -1.35 +/- 0.02 cm(-)(1), and J(3) = -2.24 +/- 0.06 cm(-)(1)), and the ground-state total spins are S(T) = 1/2 in Na(9)-2 and S(T) = 1 in K(7)Na-1.  相似文献   

4.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

5.
The 15-cobalt-substituted polyoxotungstate [Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}](5-) (1) has been characterized by single-crystal XRD, elemental analysis, IR, electrochemistry, magnetic measurements, and EPR. Single-crystal X-ray analysis was carried out on Na(5)[Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}].37H(2)O, which crystallizes in the hexagonal system, space group P6(3)/m, with a = 19.8754(17) A, b = 19.8754(17) A, c = 22.344(4) A, alpha= 90 degrees, beta = 90 degrees, gamma = 120 degrees, and Z = 2. The trimeric polyanion 1 has a core of nine Co(II) ions encapsulated by three unprecedented (beta-SiW(8)O(31)) fragments and two Cl(-) ligands. This central assembly {Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}(17-) is surrounded by six antenna-like Co(II)(H(2)O)(5) groups resulting in the satellite-like structure 1. Synthesis of 1 is accomplished in a simple one-pot procedure by interaction of Co(II) ions with [gamma-SiW(10)O(36)](8-) in aqueous, acidic NaCl medium (pH 5.4). Polyanion 1 was studied by cyclic voltammetry as a function of pH. The current intensity of its Co(II) centers was compared with that of free Co(II) in solution. Our results suggest that 1 keeps its integrity in solution. Magnetic susceptibility results show the presence of both antiferro- and ferromagnetic coupling within the (Co(II))(9) core. A fully anisotropic Ising model has been employed to describe the exchange-coupling and yields g = 2.42 +/- 0.01, J(1) = 17.0 +/- 1.5 cm(-1), and J(2) = -13 +/- 1 cm(-(1). Variable frequency EPR studies reveal an anisotropic Kramer's doublet.  相似文献   

6.
The three novel, multi-nickel-substituted heteropolytungstates [Ni(6)As(3)W(24)O(94)(H(2)O)(2)](17)(-) (1), [Ni(3)Na(H(2)O)(2)(AsW(9)O(34))(2)](11)(-) (2), and [Ni(4)Mn(2)P(3)W(24)O(94)(H(2)O)(2)](17)(-) (3) have been synthesized and characterized by IR, elemental analysis, electrochemistry, and magnetic studies. Single-crystal X-ray analysis was carried out on Na(16.5)Ni(0.25)[Ni(6)As(3)W(24)O(94)(H(2)O)(2)].54H(2)O, which crystallizes in the triclinic system, space group P1, with a = 17.450(4) A, b = 17.476(4) A, c = 22.232(4) A, alpha = 85.73(3) degrees, beta = 89.74(3) degrees, gamma = 84.33(3) degrees, and Z = 2, Na(11)[Ni(3)Na(H(2)O)(2)(AsW(9)O(34))(2)].30.5H(2)O, which crystallizes in the triclinic system, space group P1, with a = 12.228(2) A, b = 16.743(3) A, c = 23.342(5) A, alpha = 78.50(3) degrees, beta = 80.69(3) degrees, gamma = 78.66(3) degrees, and Z = 2, and Na(17)[Ni(4)Mn(2)P(3)W(24)O(94)(H(2)O)(2)].50.5H(2)O, which crystallizes in the monoclinic system, space group P2(1)/c, with a = 17.540(4) A, b = 22.303(5) A, c = 35.067(7) A, beta = 95.87(3) A, and Z = 4. Polyanion 1 consists of two B-alpha-(Ni(3)AsW(9)O(40)) Keggin moieties linked via a unique AsW(6)O(16) fragment, leading to a banana-shaped structure with C(2)(v)() symmetry. The mixed-metal tungstophosphate 3 is isostructural with 1. Polyanion 2 consists of two lacunary B-alpha-[AsW(9)O(34)](9)(-) Keggin moieties linked via three nickel(II) centers and a sodium ion. Electrochemical studies show that 1-3 exhibit a unique and reproducible voltammetric pattern and that all three compounds are stable in a large pH range. An investigation of the magnetic properties of 1-3 indicates that the exchange interactions within the trimetal clusters are ferromagnetic. However, for 1 and 3 intra- and intermolecular interactions between different trinuclear clusters are also present.  相似文献   

7.
Bi LH  Kortz U 《Inorganic chemistry》2004,43(25):7961-7962
The dimeric, pentacopper(II) substituted tungstosilicate [Cu(5)(OH)(4)(H(2)O)(2)(A-alpha-SiW(9)O(33))(2)](10-) (1) has been synthesized in good yield using a one-pot procedure by reaction of Cu(2+) ions with the trilacunary precursor salt K(10)[A-alpha-SiW(9)O(34)]. The title polyanion represents the first polyoxotungstate substituted by 5 copper centers and the central copper-hydroxo-aqua fragment is completely unprecedented. In the course of the reaction, two [A-alpha-SiW(9)O(34)](10-) Keggin half-units have fused in an asymmetrical fashion resulting in the lacunary polyoxotungstate [Si(2)W(18)O(66)](16-). The vacancy in this species is stabilized by a magnetic cluster of five octahedrally coordinated Cu(2+) ions resulting in polyanion 1 with C(2v) symmetry.  相似文献   

8.
The novel nickel-substituted, dimeric phosphotungstate [Ni(3)Na(H(2)O)(2)(PW(9)O(34))(2)](11-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and electrochemistry. X-ray single-crystal analysis was carried out on Na(11)[Ni(3)Na(H(2)O)(2)(PW(9)O(34))(2)].21.25H(2)O, which crystallizes in the triclinic system, space group P1, with a = 12.2467(6) A, b = 16.6031(7) A, c = 22.4017(12) A, alpha = 73.9870(10) degrees, beta = 87.6060(10) degrees, gamma = 79.344(2) degrees, and Z = 2. The polyanion consists of two lacunary B-alpha-[PW(9)O(34)](9-) Keggin moieties linked via three nickel(II) centers and a sodium ion. The structure of 1 is composed of two fused Keggin fragments that represent different Baker-Figgis isomers (alpha- vs beta-type). Electrochemical studies show that 1 exhibits a stable and reproducible voltammetric pattern, with a first wave featuring a chemically reversible four-electron/four-proton process. An investigation of the magnetic properties indicates that the three nickel centers exhibit ferromagnetic exchange interaction.  相似文献   

9.
The novel dimeric germanotungstates [M(4)(H(2)O)(2)(GeW(9)O(34))(2)](12)(-) (M = Mn(2+), Cu(2+), Zn(2+), Cd(2+)) have been synthesized and characterized by IR spectroscopy, elemental analysis, magnetic measurements, and (183)W-NMR spectroscopy. X-ray single-crystal analyses were carried out on Na(12)[Mn(4)(H(2)O)(2)(GeW(9)O(34))(2)].38H(2)O (Na(12)()-1), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.0419(8) A, b = 17.8422(10) A, c = 21.1626(12) A, beta = 93.3120(10) degrees, and Z = 2; Na(11)Cs(2)[Cu(4)(H(2)O)(2)(GeW(9)O(34))(2)]Cl.31H(2)O (Na(11)()Cs-2) crystallizes in the triclinic system, space group P, with a = 12.2338(17) A, b = 12.3833(17) A, c = 15.449(2) A, alpha = 100.041(2) degrees, beta = 97.034(2) degrees, gamma = 101.153(2) degrees, and Z = 1; Na(12)[Zn(4)(H(2)O)(2)(GeW(9)O(34))(2)].32H(2)O (Na(12)()-3) crystallizes in the triclinic system, space group P, with a = 11.589(3) A, b = 12.811(3) A, c = 17.221(4) A, alpha = 97.828(6) degrees, beta = 106.169(6) degrees, gamma = 112.113(5) degrees, and Z = 1; Na(12)[Cd(4)(H(2)O)(2)(GeW(9)O(34))(2)].32.2H(2)O (Na(12)()-4) crystallizes also in the triclinic system, space group P, with a = 11.6923(17) A, b = 12.8464(18) A, c = 17.616(2) A, alpha = 98.149(3) degrees, beta = 105.677(3) degrees, gamma = 112.233(2) degrees, and Z = 1. The polyanions consist of two lacunary B-alpha-[GeW(9)O(34)](10)(-) Keggin moieties linked via a rhomblike M(4)O(16) (M = Mn, Cu, Zn, Cd) group leading to a sandwich-type structure. (183)W-NMR studies of the diamagnetic Zn and Cd derivatives indicate that the solid-state polyoxoanion structures are preserved in solution. EPR measurements on Na(12)()-1 at frequencies up to 188 GHz and temperatures down to 4 K yield a single, exchange-narrowed peak, at g(iso) = 1.9949, typical of Mn systems, and an upper limit of |D| = 20.0 mT; its magnetization studies still await further theoretical treatment. Detailed EPR studies on Na(11)()Cs-2 over temperatures down to 2 K and variable frequencies yield g( parallel ) = 2.4303 and g( perpendicular ) = 2.0567 and A( parallel ) = 4.4 mT (delocalized over the Cu(4) framework), with |D| = 12.1 mT. Magnetization studies in addition yield the exchange parameters J(1) = -11 and J(2) = -82 cm(-)(1), in agreement with the EPR studies.  相似文献   

10.
The bis-phenyltin-substituted, lone-pair-containing tungstoarsenate [(C(6)H(5)Sn)(2)As(2)W(19)O(67)(H(2)O)](8)(-) (1) has been synthesized and characterized by multinuclear NMR, IR, and elemental analysis. Single-crystal X-ray analysis was carried out on (NH(4))(7)Na[(C(6)H(5)Sn)(2)As(2)W(19)O(67)(H(2)O)].17.5H(2)O (NH(4)(-1), which crystallizes in the monoclinic system, space group P2(1)/c, with a = 18.3127(17) A, b = 24.403(2) A, c = 22.965(2) A, beta = 106.223(2) degrees, and Z = 4. Polyanion 1 consists of two B-alpha-(As(III)W(9)O(33)) Keggin moieties linked via a WO(H(2)O) fragment and two SnC(6)H(5) groups leading to a sandwich-type structure with nominal C(2)(v) symmetry. Polyanion 1 is stable in solution as indicated by the expected 6-line pattern (4:4:4:4:2:1) in (183)W NMR and the expected (119)Sn, (13)C, and (1)H NMR spectra. Synthesis of 1 was accomplished by reaction of C(6)H(5)SnCl(3) and K(14)[As(2)W(19)O(67)(H(2)O)] in a 2:1 molar ratio in aqueous acidic medium (pH 2). In the solid-state structure of NH(4)(-1, neighboring polyanions are weakly bound via W-O-Na bonds leading to chains which interact with each other via the phenyl rings resulting in a 2-D assembly.  相似文献   

11.
The reaction of Na(12)[Bi(2)W(22)O(74)(OH)(2)]·44H(2)O, Na(9)[BiW(9)O(33)]·16H(2)O, lanthanide chloride and Na(2)CO(3) in aqueous solution at a pH value of about 7.0 resulted in the three unprecedented giant lanthanide-tungstobismuthate clusters Na(x)H(22-x)[(BiW(9)O(33))(4)(WO(3)){Bi(6)(μ(3)-O)(4)(μ(2)-OH)(3)}(Ln(3)(H(2)O)(6)CO(3))]·nH(2)O {Ln = Pr(3+) (1), Nd(3+) (2), La(3+) (3), x = 22 (1), 22 (2), 20 (3), n = 95 (1), 91 (2), 73 (3)}. These three complexes represent the first examples of lanthanide ions encapsulated in polyoxotungstobismuthates and the largest polytungstobismuthates so far. Furthermore, a [{Bi(6)(μ(3)-O)(4)(μ(2)-OH)(3)}](7+) polyoxo cation was incorporated into the structure of these compounds. All complexes are characterized by single-crystal X-ray diffraction, IR spectra, electronic spectroscopy, thermogravimetric and elemental analysis. Magnetic investigation revealed that the progressive depopulation of excited Stark sublevels of the lanthanide ions at low temperature and the weak antiferromagnetic interaction between the neighboring metal centres are responsible for the magnetic properties of 1 and 2. The original synthesis strategy in this work may open a gateway to assembly of large lanthanide-tungstobismuthates clusters and novel multifunctional solid materials in aqueous solution under mild conditions.  相似文献   

12.
The dititanium-containing 19-tungstodiarsenate(III) [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-) (1) has been synthesized and characterized by IR, TGA, elemental analysis, electrochemistry, and catalytic studies. Single-crystal X-ray analysis was carried out on Cs(8)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)].2CsCl.12H(2)O (Cs-1), which crystallizes in the monoclinic system, space group P2(1)/m, with a=12.7764(19), b=19.425(3), c=18.149(3) A, beta=110.234(3) degrees, and Z=2. Polyanion 1 comprises two (B-alpha-As(III)W(9)O(33)) Keggin moieties linked through an octahedral {WO(5)(H(2)O)} fragment and two unprecedented square-pyramidal {TiO(4)(OH)} groups, leading to a sandwich-type structure with nominal C(2v) symmetry. Synthesis of 1 was accomplished by reaction of TiOSO(4) and K(14)[As(2)W(19)O(67)(H(2)O)] in a 2:1 molar ratio in aqueous, acidic medium (pH 2). Polyanion 1 could also be isolated as a tetra-n-butyl ammonium (TBA) salt, {(n-C(4)H(9))(4)N}(5)H(3)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)] (TBA-1). TBA-1 was studied by cyclic voltammetry in acetonitrile (MeCN) solutions containing 0.1 M LiClO(4) and compared with the results obtained with Cs-1 in aqueous media. In MeCN, the Ti(IV) and W(VI) waves could not be separated distinctly. An important adsorption phenomenon on the glassy carbon working electrode was encountered both in cyclic voltammetry and in controlled potential electrolysis and was confirmed by Electrochemical Quartz Crystal Microbalance (EQCM) studies on a carbon film. TBA-1, dissolved in MeCN, reacts with H(2)O(2) to give peroxo complexes stable enough for characterization by UV-visible spectroscopy, cyclic voltammetry, and EQCM. TBA-1 shows high catalytic activity (TOF=11.3 h(-1)) in cyclohexene oxidation with aqueous H(2)O(2) producing products typical of a heterolytic oxidation mechanism. The stability of TBA-1 under turnover conditions was confirmed by using IR, UV-visible spectroscopy as well as cyclic voltammetry.  相似文献   

13.
We report the interaction between B-type tri-lacunary heteropolyoxotungstate anions and actinyl(V) cations in aqueous solution, yielding a greater understanding of the stability of the O≡An≡O(1+) linear dioxo actinide moiety. Previously we reported that B-α-[BiW(9)O(33)](9-) and B-α-[SbW(9)O(33)](9-) will react with NpO(2)(1+) to yield [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb). Single crystal structural characterisation of salts of these complexes revealed a core in which three Np(V) atoms interact with a central W(VI) atom through bridging oxo groups. These bridging oxygen atoms come from one of the two axial oxygens in O≡Np≡O(1+) and represent a highly unusual interaction for a discrete molecular species. In this study visible/near infra-red spectroscopy indicates that [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) could be readily stabilized in solution at near neutral pH for several months, with (NH(4))(14)Na(4)[(Np(3)W(4)O(15))(H(2)O)(39)BiW(9)O(33))(3)]·62H(2)O crystallising from solution in high yield. At lower pH and [BiW(9)O(33)](9-) : NpO(2)(1+) ratios additional Np(V) species could be observed in solution. Stabilization of [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) in solution proved more challenging, with several distinctive Np(V) near infra-red transitions observed in solution. Slow complexation kinetics and reduction to Np(IV) was also observed. High [SbW(9)O(33)](9-) : NpO(2)(1+) molar ratios and careful control of solution pH was required to prepare solutions in which [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) was the only neptunium containing species. In stark contrast to the NpO(2)(1+) chemistry, [BiW(9)O(33)](9-) readily oxidizes PuO(2)(1+) to PuO(2)(2+) yielding further evidence of the decreased stability of Pu(V)vs. Np(V). Np L(II)-edge XAFS measurement revealed very good agreement with single crystal diffraction data for the Np structural environment for [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb) in the solid state. There was also good agreement between coordination shells for [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) in the solid state and in solution, yielding further confirmation of the high stability of this particular cluster.  相似文献   

14.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

15.
Four di-Cu(II)-substituted sandwich-type germanomolybdates, (H(2)en)(2)H(7){[Na(0.5)(H(2)O)(3.5)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·6H(2)O (1), (H(2)en)(2)H{[Na(2.5)(H(2)O)(12)](2)[Cu(en)(2)][Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (2), [Na(4)(H(2)O)(12)](2)H(4)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·11H(2)O (3) and [Cu(en)(2)](2)[Cu(en)(2)(H(2)O)](2){[Cu(en)(2)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (4) (en = ethylenediamine), have been prepared. It is interesting that 1-3 were obtained in the same aqueous solution reaction system but exhibited different structures: 1 displays a 0D structure, 2 shows an organic-inorganic 1D chain structure, while 3 displays a 2D network. 4 was synthesized under hydrothermal condition by the same reagents, which represents the first transition metal-sandwiched organic-inorganic 2D heteropolymolybdate.  相似文献   

16.
We demonstrate for the first time that the superlacunary polyanion [H(2)P(4)W(24)O(94)](22)(-) reacts with electrophiles. One-pot reaction of this precursor polyanion with dimethyltin dichloride in aqueous acidic medium results in the hybrid organic-inorganic [{Sn(CH(3))(2)}(4)(H(2)P(4)W(24)O(92))(2)](28)(-) (1). Single-crystal X-ray analysis was carried out on K(17)Li(11)[{Sn(CH(3))(2)}(4)(H(2)P(4)W(24)O(92))(2)].51H(2)O (1a), which crystallizes in the tetragonal system, space group P4(2)/nmc, a = b = 21.5112(17) and c = 27.171(3) A, and Z = 2. Polyanion 1 is composed of two (P(4)W(24)O(92)) fragments that are linked by four equivalent diorganotin groups. The unprecedented assembly 1 has D(2)(d)() symmetry and contains a hydrophobic pocket in the center of the molecule. The cyclic voltammetry pattern of 1 is constituted by a first broad, 16-electron reduction wave followed by a second large current intensity wave. No splitting of the first reduction wave could be obtained at moderate scan rate values, even though two well-separated oxidation processes are associated with it. The characteristics of the first wave are clearly different from those obtained for the polyanion precursor [H(2)P(4)W(24)O(94)](22)(-) and the related, wheel-shaped [H(7)P(8)W(48)O(184)](33)(-), which is due to the {Sn(CH(3))(2)} fragments in 1. However, no feature was observed in the voltammogram which could be associated with reduction of the Sn centers.  相似文献   

17.
Interaction of the dilacunary polyanion precursor [gamma-GeW(10)O(36)](8-) with Fe(3+) ions in aqueous buffer medium (pH 4.8) results in the formation of two dimeric tungstogermanates depending on the reactant ratios. When using an Fe3+ to [gamma-GeW(10)O(36)](8-) ratio of 1:1, the asymmetric anion [K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))](12-) (1) is formed, whereas [{beta-Fe(2)GeW(10)O(37)(OH)2}2]12- (2) is formed when using a ratio of 2:1. Single-crystal X-ray analyses were carried out on Cs(3)K(9)[K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))].19H(2)O (CsK-1), which crystallizes in the triclinic system, space group P1, a = 11.4547(2), b = 19.9181(5), c = 21.0781(6) A, alpha = 66.7977(12), beta = 89.1061(12), gamma = 84.4457(11) degrees, and Z = 2 and on Cs(7)K(4)Na[{beta-Fe(2)GeW(10)O(37)(OH)(2)}(2)].39H(2)O (CsKNa-2), which crystallizes in the monoclinic system, space group C2/m, a = 32.7569(13), b = 12.2631(5), c = 14.2895(5) A, beta = 104.135(2) degrees , and Z = 2. Polyanion 1 consists of (beta-Fe(2)GeW(10)O(37)) and (gamma-GeW(10)O(36)) units linked via two Fe-O-W bridges and a central potassium ion. Two equivalent FeO(6) octahedra complete the belt of the beta-Keggin unit and link to the (gamma-GeW(10)O(36)) fragment. On the other hand, 2 consists of two {beta-Fe(2)GeW(10)O(37)(OH)(2)} units with four bridging hydroxo groups linking the four Fe(3+) ions, forming an eight-membered ring. The magnetic properties of CsK-1 and CsKNa-2 have been studied by magnetic susceptibility and magnetization measurements and fitted according to an isotropic exchange model. Both polyanions 1 and 2 exhibit diamagnetic ground states with a small amount of paramagnetic impurity. Electrochemistry studies on 1 and 2 were carried out in a pH 5 acetate medium. The two polyanions have in common the simultaneous reduction of all of their Fe(3+) centers. This observation suggests the existence of identical or almost-identical influences on these centers and their equivalence, especially in the reduced state. Controlled potential coulometry results indicate the presence of two Fe(3+) centers in 1 and four in 2. The splitting of the tungsten wave of 1 compared to the single tungsten wave of 2 is attributed to a difference in acid-base properties of the polyanions. Voltammetric peak-potential shifts as a function of pH were studied in the case of 2.  相似文献   

18.
The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.  相似文献   

19.
Lii KH  Wang SL  Liao FL 《Inorganic chemistry》2004,43(8):2499-2502
Cs(2)Pd(3)(P(2)O(7))(2) (1) and Cs(2)Pd(3)(As(2)O(7))(2) (2) have been synthesized by molten flux reactions and characterized by single-crystal X-ray diffraction. The structure of 1 consists of discrete Pd(II)O(4) squares which are linked by P(2)O(7) groups via corner-sharing to generate a 3D framework containing 12-ring channels in which Cs(+) cations are located. Compound 2 adopts a 2D layer structure with the interlayer space filled with Cs(+) cations. Within a layer there are PdO(4) squares and As(2)O(7) groups fused together via corner-sharing. Adjacent layers are stacked such that strings of Pd atoms are formed. The PdO(4) squares show eclipsed and staggered stacks with alternate short and long Pd...Pd distances. The two compounds adopt considerably different structures although they have the same general formula: Cs(2)Pd(3)(X(2)O(7))(2). Compound 2 is the first palladium arsenate reported. Crystal data for 1: orthorhombic, space group Cmc2(1) (No. 36), a = 7.6061(4) A, b = 14.2820(7) A, c = 14.1840(7) A, and Z = 4. Crystal data for 2: tetragonal, space group P4/n (No. 85), a = 16.251(1) A, c = 5.9681(5) A, and Z = 4.  相似文献   

20.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号