首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aims to provide a basic understanding of the water dispersibility of a 1:1 stoichiometric polyelectrolyte complex (SPEC) in water in the absence of low-molecular-weight salts. We studied the complexation of a linear polyanion, potassium poly(vinyl alcohol sulfate) (KPVS), with a cationic polyelectrolyte nanogel (CPENG) composed of a lightly cross-linked copolymer of N-isopropylacrylamide and 1-vinylimidazole, in an aqueous salt-free solution (pH 3 and 25 °C), as a function of the molar mixing ratio (Mmr) of anionic to cationic groups. Also studied for comparison was the complexation of KPVS with poly(diallyldimethylammonium chloride) (PDDA), which is a standard reaction in colloid titration. Turbidimetric and conductometric measurements were used in combination of dynamic light scattering (DLS). An abrupt increase of turbidity curve and a break of conductivity curve were observed at Mmr =1 when KPVS was added to the CPENG or PDDA solution, indicating the formation of SPEC. All the complexes formed at Mmr ≤ 1 were water-dispersible and hence characterized by DLS. The CONTIN analysis of DLS data showed that (i) an increase of Mmr causes a decrease of the hydrodynamic radius (R(h)) of the nanogel complex particle but (ii) the R(h) of the PDDA complex remains unchanged at Mmr < 0.8. Taking these into account, we discussed the conductometric results in terms of the random model (RM) and all-or-none model (AONM) in polyelectrolyte complex formations. It was found that KPVS and PDDA yield a water-dispersible SPEC particle at each Mmr, accompanying the uptake of counterions (K(+) and Cl(-)) by the complex. This uptake amount was about 7% of the stoichiometric release of the counterions. In the nanogel system, a complete release of the counterions was observed at Mmr < 0.2 at which one or two KPVS chains were bound to a CPENG particle, but further KPVS binding led to about 20% of the counterion uptake to maintain electroneutrality. Thus, we suggest that the counterion uptake becomes a key factor to understand the water dispersibility of SPEC particles.  相似文献   

2.
A polyelectrolyte nanogel (PENG) particle consisting of lightly cross-linked terpolymer chains of N-isopropylacrylamide, acrylic acid, and 1-vinylimidazole has positive charges in an aqueous medium at pH 3 due to protonation of the imidazole groups, and thereby forms a polyelectrolyte complex with the linear polyanion, potassium poly(vinyl alcohol) sulfate (KPVS). It has been demonstrated that the hydrodynamic radius (Rh), by dynamic light scattering (DLS), and the radius of gyration (Rg), by static light scattering (SLS), of the complex particles are smallest at approximately 1:1 mixing ratio (rm) of anions to cations, in the absence of simple salts such as KCl (Langmuir 2005, 21, 4830). Here, we aimed to study the nature of the complex formed at rm=1 and examined the complex formation process by electrophoretic light scattering (ELS). It was found that the mobility of the cationic PENG with a stoichiometric amount of bound KPVS anions (i.e., the complex formed at rm=1) is positive but not zero at 25 degrees C. This was also the case when the complex was examined by ELS at 45 degrees C, where DLS and SLS show a temperature-driven collapse of the complex. We thus assumed that (a) electroneutrality is maintained in the complex particle with the aid of counterions, but (b) the complex is highly polarizable, and hence (c) during ELS the KPVS anions would dissociate in part from the complex. This hypothesis was supported by the following results: (i) Mixing complexed and uncomplexed PENG particles at different ratios brings about an increase in Rh and a decrease in the light scattering intensity of the complex at the same time, suggesting a polyelectrolyte exchange reaction. (ii) The same phenomenon is seen when poly(diallyldimethylammonium chloride) (PDDA as a polysalt) is added to the complex dispersion, meaning that the PDDA takes out the KPVS from the complex to form a stable PDDA-KPVS complex. (iii) Upon addition of KCl, the complex undergoes little change in Rh (62-67 nm) at a salt concentration (Cs)0.2 M. (iv) The Rh (78 nm) of the soluble complex at Cs from 0.3 to 0.5 M is larger than that at Cs<0.02 M, suggesting dissociation of the KPVS ions. (v) Complexation between KPVS and PDDA as mentioned in (ii) is facilitated in the presence of 0.01 M KCl.  相似文献   

3.
Formation of protein-polyelectrolyte complexes (PPCs) between bovine serum albumin (BSA) and potassium poly (vinyl alcohol) sulfate (KPVS) was studied at pH 3 as a function of ionic strength. Turbidimetric titration was employed by a combination of dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The formal charge (Z(PPC)) of the resulting PPCs at different ionic strengths were estimated from ELS data by assuming the free draining and the non-free draining model. The radius of a BSA molecule in the complex was used in the former model for calculation of Z(PPC) with the Henry's equation, while in the latter case the hydrodynamic radius of a PPC particle determined from DLS was employed. The results obtained were compared with the Z(PPC) values calculated using a relation of Z(PPC)=n(b)Z(BSA)+alphaZ(KPVS), where Z(BSA) (> or =0) and Z(KPVS) (< or =0) denote the formal charge of BSA and KPVS, respectively. Moreover, n(b) is the number of bound proteins per complex composed of alpha polymer chains. It was suggested that the PPC between BSA and KPVS behaves as a free draining molecule during the electrophoresis, at least at a high ionic strength. Also suggested is that the PPC formation at low ionic strength follows a 1:1 stoichiometry in the charge neutralization.  相似文献   

4.
The self-aggregation behavior of two amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer samples with nearly identical PHB block lengths but different PEO block lengths, PEO-PHB-PEO(2000-810-2000) and PEO-PHB-PEO(5000-780-5000), was studied with dynamic and static light scattering (DLS and SLS), in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). The formation of polymeric micelles by the two PEO-PHB-PEO triblock copolymers was confirmed with fluorescence technique and TEM. DLS analysis showed that the hydrodynamic radius (R(h)) of the monodistributed polymeric micelles increased with an increase in PEO block length. The relative thermostability of the triblock copolymer micelles was studied by SLS and DLS at different temperatures. The aggregation number and the ratio of the radius of gyration over hydrodynamic radius were found to be independent of temperature, probably due to the strong hydrophobicity of the PHB block. The combination of DLS and SLS studies indicated that the polymeric micelles were composed of a densely packed core of hydrophobic PHB blocks and a corona shell formed by hydrophilic PEO blocks. The aggregation numbers were found to be approximately 53 for PEO-PHB-PEO(2000-810-2000) micelles and approximately 37 for PEO-PHB-PEO(5000-780-5000) micelles. The morphology of PEO-PHB-PEO spherical micelles determined by DLS and SLS measurements was further confirmed by TEM.  相似文献   

5.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

6.
We studied complex formation in an aqueous salt-free system (pH approximately 3 and at 25 degrees C) between nanogel particles having opposite charges. Anionic gel (AG) and cationic gel (CG) particles consist of lightly cross-linked N-isopropylacrylamide (NIPA) copolymers with 2-acrylamido-2-methylpropane sulfonic acid and with 1-vinylimidazole, respectively. The number of charges per particle was -4490 for AG and +20 300 for CG, as estimated from their molar masses (3.33 MD for AG and 11.7 MD for CG) by static light scattering (SLS) and their charge densities (1.35 mmol/g for AG and 1.74 mmol/g for CG) by potentiometric titration. The complexes were formed through the addition of AG to CG and vice versa using a turbidimetric titration technique. At the endpoint of the titration, the aggregate formed was a complex based upon stoichiometric charge neutralization: CG(n)()(+) + xAG(m)()(-) --> CG(n)()(+) (AG(m)()(-))(x)() where x = (n)()/(m)(). At different stages of the titration before the endpoint, the resulting complexes were examined in detail using dynamic light scattering, SLS, and electrophoretic light scattering (ELS). The main results are summarized as follows: (i) When AG with a hydrodynamic radius (R(h)) of 119 nm is added to CG (R(h) approximately 156 nm), the (R(h)) of the complex size decreases from 156 to 80 nm. (ii) In contrast to this (R(h)) change, the molar mass increases from 11.7 MD to 24 MD with increasing amounts of added AG. (iii) Upon addition of CG to AG, the complex formed has the same size ((R(h)) approximately 80 nm) and the same molar mass (55 +/- 2.5 MD) until 55 +/- 5% of AG has been consumed in the complexation. To understand these results, we used the following two models: the random model (RM), in which the added AG particles uniformly bind to all of the CG particles in the system via a strong electrostatic attraction, and the all-or-none model (AONM), in which part of the AG particles in the system preferably bind to the added CG particles to neutralize their electric charges but the other AG particles are uncomplexed and remain in the system. The complex formations upon addition of AG to CG and CG to AG were elucidated in terms of RM and AONM, respectively.  相似文献   

7.
The interaction between the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) has been investigated by means of isothermal titration and differential scanning calorimetry (DSC) as well as static and dynamic light scattering (SLS and DLS). P123 self-assembles in water into spherical micelles at ambient temperatures. At raised temperatures, the DSC data revealed a sphere-to-rod transition of the P123 micelles around 60 degrees C. C12EO6 interacts strongly with P123 micelles in aqueous solution to give mixed micelles with a critical micelle concentration (cmc) well below the cmc for pure C12EO6. The presence of C12EO6 also lowers the critical micelle temperature of P123 so aggregation starts at significantly lower temperatures. A new phenomenon was observed in the P123-C12EO6 system, namely, a well-defined sphere-to-rod transition of the mixed micelles. A visual phase study of mixtures containing 1.00 wt % P123 showed that in a narrow concentration range of C12EO6 both the sphere-to-rod transition and the liquid-liquid phase separation temperature are strongly depressed compared to the pure P123-water system. The hydrodynamic radius of spherical mixed micelles at a C12EO6/P123 molar ratio of 2.2 was estimated from DLS to be 9.1 nm, whereas it is 24.1 nm for the rodlike micelles. Furthermore, the hydrodynamic length of the rods at a molar ratio of 2.2 is in the range of 100 nm. The retarded kinetics of the shape transition was detected in titration calorimetric experiments at 40 degrees C and further studied by using time-resolved DLS and SLS. The rate of growth, which was slow (>2000 s), was found to increase with the total concentration.  相似文献   

8.
Hybrid polyion complex (HPIC) micelles are nanoaggregates obtained by complexation of multivalent metal ions by double hydrophilic block copolymers (DHBC). Solutions of DHBC such as the poly(acrylic acid)-block-poly(acrylamide) (PAA-b-PAM) or poly(acrylic acid)-block-poly(2-hydroxyethylacrylate) (PAA-b-PHEA), constituted of an ionizable complexing block and a neutral stabilizing block, were mixed with solutions of metal ions, which are either monoatomic ions or metal polycations, such as Al(3+), La(3+), or Al(13)(7+). The physicochemical properties of the HPIC micelles were investigated by small angle neutron scattering (SANS) and dynamic light scattering (DLS) as a function of the polymer block lengths and the nature of the cation. Mixtures of metal cations and asymmetric block copolymers with a complexing block smaller than the stabilizing block lead to the formation of stable colloidal HPIC micelles. The hydrodynamic radius of the HPIC micelles varies with the polymer molecular weight as M(0.6). In addition, the variation of R(h) of the HPIC micelle is stronger when the complexing block length is increased than when the neutral block length is increased. R(h) is highly sensitive to the polymer asymmetry degree (block weight ratio), and this is even more true when the polymer asymmetry degree goes down to values close to 3. SANS experiments reveal that HPIC micelles exhibit a well-defined core-corona nanostructure; the core is formed by the insoluble dense poly(acrylate)/metal cation complex, and the diffuse corona is constituted of swollen neutral polymer chains. The scattering curves were modeled by an analytical function of the form factor; the fitting parameters of the Pedersen's model provide information on the core size, the corona thickness, and the aggregation number of the micelles. For a given metal ion, the micelle core radius increases as the PAA block length. The radius of gyration of the micelle is very close to the value of the core radius, while it varies very weakly with the neutral block length. Nevertheless, the radius of gyration of the micelle is highly dependent on the asymmetry degree of the polymer: if the neutral block length increases in a large extent, the micelle radius of gyration decreases due to a decrease of the micelle aggregation number. The variation of the R(g)/R(h) ratio as a function of the polymer block lengths confirms the nanostructure associating a dense spherical core and a diffuse corona. Finally, the high stability of HPIC micelles with increasing concentration is the result of the nature of the coordination complex bonds in the micelle core.  相似文献   

9.
The geometric characteristics of nanogel particles in aqueous solutions were studied by determining their ratios of radius of gyration (mean-square radius; Rg) to hydrodynamic radius (Rh), Rg/Rh, derived from static light scattering and dynamic light scattering experiments, respectively. The various nanogel samples studied included ones composed of lightly cross-linked N-isopropylacrylamide (NIPA) polymer, NIPA-based anionic or cationic copolymers, and amphoteric terpolymers. Polyelectrolyte complexes between anionic or cationic nanogels and oppositely charged polyions or nanogels having opposite charges were also studied. Most NIPA and NIPA-based polyelectrolyte nanogels in a swollen state had Rg/Rh values >0.775, which is the theoretically predicted value for a solid sphere. In a collapsed state, one may expect nanogel particles to be spherical in shape; however, this was not the case for a variety of nanogel samples, either with or without charges. These data were consistent with the idea that the surfaces of these nanogel particles were decorated with attached dangling chains. The Rg/Rh data from polyelectrolyte-nanogel complexes, however, indicated different structures from this. It was found that most of the polyelectrolyte-nanogel complex particles had Rg/Rh approximately 0.775. This suggested that the complexed nanogel particles were spherical in shape and that there were no dangling surface chains.  相似文献   

10.
In order to compare the size characterizations in poly(ethylene glycol) (PEG) obtained by dynamic light scattering (DLS) and small angle neutron scattering (SANS), DLS experiments were performed in various PEG solutions to ascertain the hydrodynamic radius. Data from the experiments were analyzed by using a method to eliminate effects of PEG aggregation on dynamic correlation functions. The results of the analysis were then compared to the radii of gyration reported from SANS experiments. The relation between the hydrodynamic radius, obtained by DLS, and the radius of gyration, obtained by SANS, in PEG in solution was found to be in agreement with a previously obtained relation for PEG, where the radius of gyration was found by static light scattering.  相似文献   

11.
The living radical photocopolymerization of 2-(N,N-diethyldithiocarbamyl)ethyl methacrylate (DCEM) as inimer and stearyl methacrylate (STM) as comonomer was carried out under UV irradiation. According to this method, we synthesized hyperbranched polymers (HP) consisting of a STM sequence having a long alkyl side chain. The gel permeation chromatography distribution of hyperbranched polymers had a unimodal pattern. The reactivity ratios (r(1)=0.79 and r(2)=0.81) were estimated by the Kelen-Tüd?s method (DCEM: [M](1) and STM: [M](2)). These values indicated that the two monomers showed almost equal reactivity toward propagating radical species. The radius of gyration (R(g)) and the hydrodynamic radius (R(h)) of copolymers were determined by static and dynamic light scattering (SLS and DLS), and the values of R(g)/R(h) changed from 0.79 to 1.59 with an increment of the feed amount of STM. These results indicated that the copolymer structures changed from hard spheres to loose branched molecules in solution.  相似文献   

12.
Water-soluble pH-responsive [60]fullerene end-capped poly(acrylic acid) (PAA85-b-C60) was synthesized using atom-transfer radical polymerization (ATRP) technique. The unusual morphological transformation of the polymer induced by the binding of nonionic surfactant Triton X-100 (TX100) at different degrees of neutralization (alpha) was investigated using isothermal titration calorimetry (ITC), UV-vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). For the 5 mM (monomer concentration) polymer solution at pH < 4, approximately 1.3 mM TX100 binds specifically to C60 domains of the polymeric micelles driven by hydrophobic interaction, which induces a structural transformation of the polymer from a large compound micelle with a radius of 110 nm to a dense precipitated spherical polymer/surfactant complex (PSC) with a radius of 500 nm. The precipitates are resolubilized by a wetting layer of TX100 in excess surfactant (> 1.7 mM in the polymer solution). The binding is significantly weakened and the complexation is disrupted with increasing pH, where the interaction completely ceased at pH > 6.  相似文献   

13.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

14.
The interactions between an oxyphenylethylene-oxyethylene nonionic diblock copolymer with the anionic surfactant sodium dodecyl sulfate (SDS) have been studied in dilute aqueous solutions by static and dynamic light scattering (SLS and DLS, respectively), isothermal titration calorimetry (ITC), and 13C and self-diffusion nuclear magnetic resonance techniques. The studied copolymer, S20E67, where S denotes the hydrophobic styrene oxide unit and E the hydrophilic oxyethylene unit, forms micelles of 15.6 nm at 25 degrees C, whose core is formed by the styrene oxide chains surrounded by a water swollen polyoxyethylene corona. The S20E67/SDS system has been investigated at a copolymer concentration of 2.5 g dm(-3), for which the copolymer is fully micellized, and with varying surfactant concentration up to approximately 0.15 M. When SDS is added to the solution, two different types of complexes are observed at various surfactant concentrations. From SLS and DLS it can be seen that, at low SDS concentrations, a copolymer-rich surfactant mixed micelle or complex is formed after association of SDS molecules to block copolymer micelles. These interactions give rise to a strong decrease in both light scattering intensity and hydrodynamic radius of the mixed micelles, which has been ascribed to an effective reduction of the complex size, and also an effect arising from the increasing electrostatic repulsion of charged surfactant-copolymer micelles. At higher surfactant concentrations, the copolymer-rich surfactant micelles progressively are destroyed to give surfactant-rich-copolymer micelles, which would be formed by a surfactant micelle bound to one or very few copolymer unimers. ITC data seem to confirm the results of light scattering, showing the dehydration and rehydration processes accompanying the formation and subsequent destruction of the copolymer-rich surfactant mixed micelles. The extent of interaction between the copolymer and the surfactant is seen to involve as much as carbon 3 (C3) of the SDS molecule. Self-diffusion coefficients corroborated light scattering data.  相似文献   

15.
A chemo/regio selective enzymatic methodology has been designed to synthesize amphiphilic copolymers based on amino acid diesters and poly(ethylene glycol) [PEG]. The condensation polymerization was catalyzed by immobilized Candida antarctica lipase B (Novozyme 435) under solvent-less conditions. The synthesized polymers 3a–c were derivatized with long chain acid chlorides by chemical acylation to get the amphiphilic polymers 4a–c. The physical properties of the synthesized amphiphilic polymers viz: aggregation number, critical micelle concentration (CMC), radius of gyration (Rg), hydrodynamic radius (Rh) and particle size distribution were studied by static and dynamic light scattering (SLS and DLS) techniques. The polymers were found to be promising in drug delivery applications.  相似文献   

16.
The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.  相似文献   

17.
Dilute dispersions of the synthetic bilayer forming double-chained cationic lipid dioctadecyldimethylammonium bromide (DODAB) were investigated. In dispersions sonicated above the chain melting temperature Tm (approximately 45 degrees C) it was found by H NMR that about 50% of the surfactant chains remained fluid when the samples were cooled to room temperature, which is 20 degrees C below Tm. In contrast, there was no sign of a fluid fraction in unsonicated samples at room temperature. The addition of the anionic surfactant sodium dodecyl sulfate (SDS) to DODAB dispersions at room temperature resulted in the formation of an essentially stoichiometric DODA-DS complex with frozen chains, as seen by titration calorimetry and H NMR experiments. For sonicated samples, turbidity experiments demonstrated that, after a fast complexation reaction, the system remains colloidally stable unless the SDS-to-DODAB mixing ratio is too close to unity. H NMR experiments also showed that in the unreacted DODAB the fraction of fluid chains remained close to 50%, indicating either that SDS reacts equally fast with fluid and frozen DODAB or that there is a relaxation of the fluid fraction after the complexation. The melting enthalpy and the melting temperature of the alkyl chains rise gradually as the mixing ratio increases. We observed with cryo-TEM that the fraction of large unilamellar vesicles was significantly larger after addition of SDS. This indicates vesicle fusion. Based on both wide- and small-angle X-ray scattering patterns, the structure of the equimolar SDS-DODAB complex at 25 degress C was proposed to be lamellar.  相似文献   

18.
Dynamic light scattering (DLS) and static light scattering (SLS) experiments have been performed on partially neutralized poly(acrylic acid) and poly(methacrylic acid) solutions and gels. The gels exhibit a non-ergodic behavior, much less marked however than that observed in neutral systems. By combining DLS and SLS, the fluctuating part of the light scattered from PAA gel was separated from the total scattered intensity and found to be almost equal to the intensity scattered by the solution. Also the diffusion coefficient associated with the dynamic fluctuation was found to be the same in the PAA gel and the PAA solution.  相似文献   

19.
蔡丽波  左榘  唐朔 《物理化学学报》2005,21(10):1108-1112
采用散射斑纹(speckle)技术, 即散射光强涨落法, 研究了κ-卡拉胶(KC)热可逆凝胶的非遍历行为. 证明了非遍历性的存在, 并研究了浓度、温度等条件对该非遍历性的影响. 结果表明:该物理凝胶存在非遍历性, 并随KC浓度增加, 凝胶非遍历性增大;随温度升高, 凝胶非遍历性逐渐减小, 直至消失.  相似文献   

20.
The wormlike micelles formed with the binary mixtures of surfactant polyoxyethylene alkyl ethers (CiEj), C10E5 + C14E5 (Mix1) and C14E5 + C14E7 (Mix2), were characterized by static (SLS) and dynamic light scattering (DLS) experiments. The SLS results have been analyzed with the aid of the light scattering theory for micelle solutions, thereby yielding the molar mass Mw(c) as a function of c along with the cross-sectional diameter d of the micelle. The observed Kc/DeltaR0 as a function of c, the mean-square radius of gyration (S2) and the hydrodynamic radius RH as functions of Mw have been well described by the theories for the wormlike spherocylinder model. It has been found that the micellar length increases with increasing concentration c or with raising temperature T irrespective of the composition of the surfactant mixtures. The length of the Mix1 and Mix2 micelles at fixed c and T steeply increases with increasing weight fraction wt of C14E5 in both of the surfactant mixtures, implying that the micelles greatly grow in length when the surfactant component with longer alkyl group or with shorter oxyethylene group increases in the mixture. The results are in line with the findings for the micelles of the single surfactant systems where the CiEj micelles grow in length to a greater extent for larger i and smaller j. Although the values of d and the spacing s between the adjacent surfactant molecules on the micellar surface do not significantly vary with composition of the surfactant mixture, the stiffness parameter lambda-1 remarkably decreases with wt in both Mix1 and Mix2 micelles, indicating that the stiffness of the micelle is controlled by the relative strength of the repulsive force due to the hydrophilic interactions between oxyethylene groups to the attractive one due to the hydrophobic interactions between alkyl groups among the surfactant molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号