首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I discuss our current understanding of the properties of hot and dense hadronic matter in equilibrium and its excitation spectrum. The latter allows for an experimental study of matter under extreme conditions through ‘in-medium spectroscopy’.  相似文献   

2.
3.
Theoretical issues and perspectives of hadronic matter at high baryon density are discussed with focus on the restoration of chiral symmetry and observable consequences.Received: 30 September 2002, Published online: 22 October 2003PACS: 25.75.-q Relativistic heavy-ion collisions - 21.65. + f Nuclear matter  相似文献   

4.
Hydrogen bonds in H2O ice change dramatically upon compression. Thereby a hydrogen-bonded molecular crystal, ice VII, is transformed to an atomic crystal, ice X. Car-Parrinello simulations reproduce the features of the x-ray diffraction spectra up to about 170 GPa but allow for analysis in real space. Starting from molecular ice VII with static orientational disorder, dynamical translational disordering occurs first via creation of ionic defects, which results in a systematic violation of the ice rules. As a second step, the transformation to an atomic solid and thus hydrogen-bond centering occurs around 110 GPa at 300 K and no novel phase is found up to at least 170 GPa.  相似文献   

5.
Measurements of the rotating frame proton spin relaxation timeT 1p in hexagonal ice single crystals as a function of temperature ? for various rotating magnetic field strengths reveal the expectedT 1p minimum at the lowest practicable field values. This allows a very precise determination of the proton correlation (? molecular jump) time τc and the related activation energy ΔE by means of the theoretical reasoning of relaxation spectroscopy. We find the Arrhenius-law temperature dependenceτ c=1.99×10?17exp(0.603/8.61×10?5 ?)sec, which is in good agreement with our earlier indirect derivation.  相似文献   

6.
7.
An algorithm is presented for the computation of photoabsorption cross sections at arbitrary temperature and matter density. The “average atom” model is refined to give an approximaate account for the different ionization stages. The broadening of spectral lines is accounted for in a simple approximation. Calculations are presented for the beryllium and germanium plasmas in the frequency region of spectral lines.  相似文献   

8.
Temperature equilibration of hydrogen is studied for conditions relevant to inertial confinement fusion. New molecular-dynamics simulations and results from quantum many-body theory are compared with Landau-Spitzer predictions for temperatures T with 50相似文献   

9.
The ultraslow motion of defects in high purity hexagonal H2O ice has been studied by proton dipolarT 1D measurements in the strong collision limit, using the Jeener technique. The obtained NMR correlation times agree rather well with both the Schottky H2O diffusion timest s=r 2/6D and the deuteron correlation times in D2O ice, suggesting that Schottky rather than interstitial diffusion dominates spin-lattice relaxation in both H2O and D2O ice.On leave of absence from University of Ljubljana, Institute J. Stefan.  相似文献   

10.
The behavior of neutral pseudoscalar mesons π0,η and η′ in hot and dense matter is investigated, in the framework of the three flavor Nambu–Jona-Lasinio model. Three different scenarios are considered: zero density and finite temperature, zero temperature and finite density in a flavor asymmetric medium with and without strange valence quarks, and finite temperature and density. The behavior of mesons is analyzed in connection with possible signatures of restoration of symmetries. In the high density region and at zero temperature it is found that the mass of the η′ increases, the deviation from the mass of the η being more pronounced in matter without strange valence quarks.  相似文献   

11.
12.
The proton spin-lattice relaxation time has been measured at 20·8 Mc/s for a series of solutions of water in heavy water and solutions of ammonia in heavy ammonia for the temperature range from the melting point to the liquid-vapour critical temperature. Measurements have also been made for water over limited temperature ranges at several fixed densities.

The contributions to the spin-lattice relaxation time from direct dipolar and spin-rotation interactions have been separated. The spin-rotation interaction contribution appears to be the same for H2O as for HDO and also as between NH3, NH2D and NHD2 and this result is justified. The correlation times for molecular re-orientation, τd, and for molecular angular velocity, τsr, are derived from the results and in so doing some support for the Hubbard [12] relation betweent τsr and τd is adduced. It is found that at the critical temperature τsrd which contrasts with other liquids for which it is usually found that τsr??τd. The spin-rotation interaction constants in the water and ammonia molecules are found to be approximately 120 kc/s and 80 kc/s, respectively.

An attempt to separate the inter- and intra-molecular contributions to the dipolar spin-lattice relaxation time is possible in principle, in spite of the rapid proton exchange, but is frustrated by the fact that the equilibrium constants are little different from their statistical values. Nevertheless there is evidence that the two interactions vary in much the same way with temperature.

The correlation times deduced from the dipolar relaxation time show close relationship with dielectric, self diffusion and deuteron relaxation time data.

It is suggested that the re-orientation of both water and ammonia molecules may be by a small angle Brownian diffusion even near the critical temperature.  相似文献   

13.
14.
15.
The structure of the proton sublattice of ice at an ice-metal interface is analyzed by solving the Ginzburg-Landau equation for an order parameter describing the proton ordering under an appropriate boundary condition [1, 2]. When the interaction between protons and the substrate is weak, the ice rules that govern proton order are weaker at the interface as compared to bulk ice, but to a lesser extent than at the free ice surface. In the case of strong proton-substrate interaction (clean interface and/or high conductivity of the substrate), the ice rules are stronger at the interface as compared to bulk ice, which corresponds to a more ordered proton sublattice. The latter case corresponds to a lower concentration of defects in the proton sublattice, which determine important properties of ice, such as adhesion, electrical conductivity, plasticity, and electric field distribution near the interface. A qualitative correlation is described between electrical properties of the substrate and mechanical properties of the interface, including adhesion and friction.  相似文献   

16.
High P-T Raman measurements of solid and fluid hydrogen to above 1100 K at 70 GPa and to above 650 K in 150 GPa range, conditions previously inaccessible by static compression experiments, provide new insight into the behavior of the material under extreme conditions. The data give a direct measure of the melting curve that extends previous optical investigations by up to a factor of 4 in pressure. The magnitude of the vibron frequency temperature derivative (dnu/dT)(P) increases by a factor of approximately 30 over the measured pressure range, indicating an increase in intrinsic anharmonicity and weakening of the molecular bond.  相似文献   

17.
The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing "interstitial," the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled.  相似文献   

18.
Hydronium segregates to the surface of H2O (D2O) ice films grown on Pt(1 1 1) above 151 K (158 K). This is observed via the voltage that develops across the films, utilizing work function measurements. The dependence of this voltage on the film’s thickness is explained by a simple equilibrium model: as the film grows, most of the surface ions migrate so as to remain at the ice–vacuum interface, while a fixed percentage (0.05%) take the thermodynamically–unfavored route, to become incorporated into the growing bulk ice. This model implies a ΔG of about +0.1 eV for the movement of ions from the ice surface into the bulk ice.  相似文献   

19.
We present a study of the π π scattering amplitude in the σ and ρ channels at finite temperature and nuclear density within a chiral unitary framework. Meson resonances are dynamically generated in our approach, which allows us to analyze the behavior of their associated scattering poles when the system is driven towards chiral-symmetry restoration. Medium effects are incorporated in three ways: (a) by thermal corrections of the unitarized scattering amplitudes, (b) by finite nuclear-density effects associated to a renormalization of the pion decay constant, and complementarily (c) by extending our calculation of the scalar–isoscalar channel to account for finite nuclear-density and temperature effects in a microscopic many-body implementation of pion dynamics. Our results are discussed in connection with several phenomenological aspects relevant for nuclear-matter and heavy-ion collision experiments, such as ρ mass scaling versus broadening from dilepton spectra and chiral restoration signals in the σ channel. We also elaborate on the molecular nature of π π resonances.  相似文献   

20.
《Nuclear Physics A》1999,653(3):277-300
The modifications of hadronic masses and decay widths at finite temperature and baryon density are investigated using a phenomenological model of hadronic interactions in the Relativistic Hartree Approximation. We consider an exhaustive set of hadronic reactions and vector meson decays to estimate the photon emission from hot and dense hadronic matter. The reduction in the vector meson masses and decay widths is seen to cause an enhancement in the photon production. It is observed that the effect of p-decay width on photon spectra is negligible. The effects on dilepton production from pion annihilation are also indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号