首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.  相似文献   

3.
The influence of dc biasing current on temperature dependence of resistivity and low-field magnetoresistance (MR) of La0.67Ba0.33MnO3 bulk sample is reported. A prominent finding is the change in resistivity around the insulator-to-metal transition temperature (TIM) and the change in MR around the ferromagnetic transition temperature (TC). The decrease in MR around TC at higher biasing current indicates a strong interaction between carrier spin and spin of Mn ions resulting in a higher alignment of Mn ion spins. Change in resistivity around TIM is interpreted in the framework of percolative conduction model based on the mixed phase of itinerant electrons and localized magnetic polarons.  相似文献   

4.
Zn1-xMnxO bulks have been prepared by the solid state reaction method. Zn vapor treatment has been carried out to adjust the carrier concentration. For the Zn treated Zn1-xMnxO bulks, analysis of the temperature dependence of resistance and the field dependence of magnetoresistance demonstrates that the bound magnetic polarons (BMPs) play an important role in the electrical transport behavior. The hopping of BMPs dominates the electrical conduction behavior when temperature is below 170 K. At low temperature,paramagnetic Zn1-xMnxO bulks show a large magnetoresistance effect,which indicates that the large magnetoresistance effect in transition-metal doped ZnO dilute magnetic semiconductors is independent of their magnetic states.  相似文献   

5.
We review recent work in the field of organic spintronics, focusing on our own contributions to this field. There are two principle magnetoresistance effects that occur in organic devices. (i) Organic magnetoresistance (OMAR), which occurs in nonmagnetic organic semiconductor devices. For example, in devices made from the prototypical small molecule Alq3 OMAR reaches values of 10% or more at room temperature. (ii) Organic spin‐valve effects that occur in devices that employ ferromagnetic electrodes for spin‐polarized current injection and detection. We undertake an analysis of these two types of magnetoresistance with the goal of identifying the dominant spin‐scattering mechanism. Analysis of OMAR reveals that hyperfine coupling is the dominant spin‐coupling mechanism. Spin–orbit coupling, on the other hand, is important only in organic semiconductor materials containing heavy atoms. We explore the reasons why spin–orbit coupling is relatively unimportant in hydrocarbon materials. Next, we present a theory for spin diffusion in disordered organic semiconductors based on hyperfine coupling, taking into account a combination of incoherent carrier hopping and coherent spin precession in the random hyperfine magnetic fields. We compare our findings with experimental values for the spin‐diffusion length. Finally, we demonstrate a criterion that allows the determination whether the organic spin‐valves operate in the tunneling or injection regimes. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A unified physical model for thermopower was presented in organic semiconductors, based on the Marcus theory and variable-range hopping theory. According to the proposed model, the characteristic of charge carrier thermoelectric transport in organic semiconductors has been investigated. In particular, polaron effects, energetic disorder, and carrier density dependence of the thermopower have been discussed in detailed. The calculation also shows a good agreement with the experimental data in organic semiconductors.  相似文献   

7.
Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to the carrier momentum.In this paper, we briefly review the exotic transport properties induced by topological SSs in topological-insulator(TI)nanostructures, which have larger surface-to-volume ratios than those of bulk TI materials. We discuss the electrical spin generation in TIs and its effect on the transport properties. A current flow can generate a pure in-plane spin polarization on the surface, leading to a current-direction-dependent magnetoresistance in spin valve devices based on TI nanostructures.A relative momentum shift of two coupled topological SSs also generates net spin polarization and induces an in-plane anisotropic negative magnetoresistance. Therefore, the spin-momentum locking can enable the broad tuning of the spin transport properties of topological devices for spintronic applications.  相似文献   

8.
We predict the universal power-law dependence of the localization length on the magnetic field in the strongly localized regime. This effect is due to the orbital quantum interference. Physically, this dependence shows up in an anomalously large negative magnetoresistance in the hopping regime. The reason for the universality is that the problem of the electron tunneling in a random media belongs to the same universality class as the directed polymer problem even in the case of wave functions of random sign. We present numerical simulations that prove this conjecture. We discuss the existing experiments that show anomalously large magnetoresistance. We also discuss the role of localized spins in real materials and the spin polarizing effect of the magnetic field.  相似文献   

9.
The transport properties of multilayer GaAs/AlGaAs structures doped modulationally with Be so as to fill, in equilibrium, the states of upper Hubbard band (A+ centers) with holes were studied. For the concentration of dopants on the order of 5×1011cm?2, the hopping conduction over the states in the Coulomb gap was observed in the temperature range 0.4–4 K. The characteristic temperature (T1) was determined from the temperature dependence of conductance and found to be appreciably lower (by 30 times) than its theoretically predicted value. This discrepancy is assumed to be due to the correlated hopping effect. In the temperature dependence of magnetoresistance, the suppression of negative magnetoresistance was observed with lowering temperature. This is explained by the weakness of underbarrier scattering in the transport via the upper Hubbard band.  相似文献   

10.
We present a mechanism for the recently discovered magnetoresistance in disordered pi-conjugated materials, based on hopping of polarons and bipolaron formation, in the presence of the random hyperfine fields of the hydrogen nuclei and an external magnetic field. Within a simple model we describe the magnetic field dependence of the bipolaron density. Monte Carlo simulations including on-site and longer-range Coulomb repulsion show how this leads to positive and negative magnetoresistance. Depending on the branching ratio between bipolaron formation or dissociation and hopping rates, two different line shapes in excellent agreement with experiment are obtained.  相似文献   

11.
Epitaxial oxide trilayer junctions composed of magnetite (Fe3O4) and doped manganite (La0.7Sr0.3MnO3) exhibit inverse magnetoresistance as large as -25% in fields of 4 kOe. The inverse magnetoresistance confirms the theoretically predicted negative spin polarization of Fe3O4. Transport through the barrier can be understood in terms of hopping transport through localized states that preserve electron spin information. The junction magnetoresistance versus temperature curve exhibits a peak around 60 K that is explained in terms of the paramagnetic to ferrimagnetic transition of the CoCr2O4 barrier.  相似文献   

12.
13.
We study transport in ferromagnetic single-electron transistors. The non-equilibrium spin accumulation on the island caused by a finite current through the system is described by a generalized theory of the Coulomb blockade. It enhances the tunnel magnetoresistance and has a drastic effect on the time-dependent transport properties. A transient decay of the spin accumulation may reverse the electric current on time scales of the order of the spin-flip relaxation time. This can be used as an experimental signature of the non-equilibrium spin accumulation. Received 6 May 1998  相似文献   

14.
We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho downward arrow/rho upward arrow approximately 5.5, in good agreement with thin film band structure calculations.  相似文献   

15.
Pei-Sen Li 《中国物理 B》2022,31(3):38502-038502
For convenient and efficient verification of the magnetoresistance effect in graphene spintronic devices, vertical magnetic junctions with monolayer graphene sandwiched between two NiFe electrodes are fabricated by a relatively simple way of transferring CVD graphene onto the bottom ferromagnetic stripes. The anisotropic magnetoresistance contribution is excluded by the experimental result of magnetoresistance (MR) ratio dependence on the magnetic field direction. The spin-dependent transport measurement reveals two distinct resistance states switching under an in-plane sweeping magnetic field. A magnetoresistance ratio of about 0.17 % is obtained at room temperature and it shows a typical monotonic downward trend with the bias current increasing. This bias dependence of MR further verifies that the spin transport signal in our device is not from the anisotropic magnetoresistance. Meanwhile, the IV curve is found to manifest a linear behavior, which demonstrates the Ohmic contacts at the interface and the metallic transport characteristic of vertical graphene junction.  相似文献   

16.
A two-dimensional interacting magnetic domains model is examined to explain the colossal magnetoresistance (CMR) recently observed in manganese-oxides. Electrons transport properties were studied by using Landauer's multichannel transport theory and recursive Green's function technique. Colossal magnetoresistance shows up in this system. The temperature dependence of system's MR is also studied.  相似文献   

17.
We report studies of the magnetoresistance (MR) in a two-dimensional electron system in (100) Si-inversion layers, for perpendicular and parallel orientations of the current with respect to the magnetic field in the 2D plane. The magnetoresistance is almost isotropic; this result does not support the suggestion of its orbital origin. In the hopping regime, however, the MR contains a weak anisotropic component that is nonmonotonic in the magnetic field. We found that the field, at which the MR saturates, varies for different samples by a factor of 2 at a given carrier density. Therefore, the saturation of the MR cannot be identified with the complete spin polarization of free carriers.  相似文献   

18.
We report electrical transport measurements on individual disordered multiwalled carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows an exp[−(T0/T)1/2] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T0. The electric field dependence of low-temperature conductance behaves as exp[−(ξ0/ξ)1/2] at high electric field ξ at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at . Comparison with theory indicates that our data are best explained by Coulomb-gap variable-range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.  相似文献   

19.
This paper proposes a universal spin-dependent variable range hopping theoretical model to describe various experimental transport phenomena observed in wide-band-gap oxide ferromagnetic semiconductors with high transition metal concentration. The contributions of the `hard gap' energy, Coulomb interaction, correlation energy, and exchange interaction to the electrical transport are considered in the universal variable range hopping theoretical model. By fitting the temperature and magnetic field dependence of the experimental sheet resistance to the theoretical model, the spin polarization ratio of electrical carriers near the Fermi level and interactions between electrical carriers can be obtained.  相似文献   

20.
The temperature and magnetic-field dependences of the conductivity associated with hopping transport of holes over a 2D array of Ge/Si(001) quantum dots with various filling factors are studied experimentally. A transition from the Éfros-Shklovski? law for the temperature dependence of hopping conductivity to the Arrhenius law with an activation energy equal to 1.0–1.2 meV is observed upon a decrease in temperature. The activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation in fields exceeding 4 T. It is found that the magnetoresistance in layers of quantum dots is essentially anisotropic: the conductivity decreases in an increasing magnetic field oriented perpendicularly to a quantum dot layer and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magnetoresistance for transverse and longitudinal field orientations differ by two orders of magnitude. The experimental results are interpreted using the model of many-particle correlations of holes localized in quantum dots, which lead to the formation of electron polarons in a 2D disordered system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号